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A SVM Surrogate Model-Based Method for Parametric Yield Optimization
Angelo Ciccazzo, Gianni Di Pillo, and Vittorio Latorre

Abstract—Yield optimization is a challenging topic in electronic cir-
cuit design. Methods for yield optimization based on Monte Carlo (MC)
analysis of a circuit whose behavior is reproduced by simulations usually
require too many time expensive simulations to be effective for iterative
optimization. In this paper, we propose a method which tackles the yield
optimization problem by combining a support vector machine (SVM) sur-
rogate model (SM) of the circuit to perform the MC analysis and evaluate
the yield, and an efficient optimization method to maximize the yield eval-
uated using the SVM SM. We report the numerical results obtained for
the design of two real consumer circuits provided by STMicroelectronics,
and we compare these results with the ones obtained using the industrial
benchmark currently adopted at STMicroelectronics for yield optimiza-
tion. These preliminary results show that the method is promising to be
very efficient and capable of reaching design solutions with high values
of the yield.

Index Terms—Derivative-free optimization algorithm, elec-
tronic circuit design, support vector machine (SVM) surrogate
model (SM), yield optimization.

I. INTRODUCTION

We propose a methodology to maximize the yield in the electronic
circuit design process. The behavior of a circuit is generally described
by its performances fi, i = 1, . . . , m such as the gain, the delay
between two waveforms, the phase margin, the dissipated power, and
so on. For a circuit to be in full working order, all the m performances
fi must satisfy certain specifications that are generally given in terms
of lower and upper bounds

li ≤ fi(xd, xo, xp) ≤ ui i = 1, . . . , m (1)

where the variables are listed as follows.
1) xd (Design Variables): These variables represent the geometri-

cal dimensions of the components in the circuits (e.g., channel
widths and lengths).

2) xo (Operating Variables): These variables model operating and
environmental conditions (e.g., supply voltage and temperature).

3) xp (Process Variables): These variables are usually subject to
uncertainty due to fluctuations in the manufacturing process and
are generally modeled by Gaussian or uniform distributions
(e.g., oxide thickness, threshold voltage, and channel length
reduction).

We denote by A the feasible set of the design, operating, and
process variables

A =
{
(xd, xo, xp) | li ≤ fi(xd, xo, xp) ≤ ui, i = 1, . . . , m

}
. (2)
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The yield represents the probability of a circuit to be in full work-
ing order for a certain design choice xd , subject to given operating
variables xo and taking account of the process and environmental
variations xp.

In recent years, there is an increasing interest in yield optimiza-
tion due to both the increasing number of components in a single
circuit and the decrease of its size. Handling these conflicting trends
is becoming more and more difficult, because they enhance the sen-
sitivity of the circuit performances to the statistical variations in the
manufacturing process. Some major challenges come from the need
of making the final design robust toward these variations. This implies
the use of accurate computer-aided design processes with numerical
computer simulations employed in order to evaluate the circuit per-
formances. Simulations are generally very time expensive and this
reason prompts the interest in developing methods capable of per-
forming reliable analysis with the use of less simulations as possible.

Various optimization methods have been applied to the problem
of robust circuit design, see [1]. Focusing on yield optimization,
two classes of methods are mainly adopted: 1) the geometric yield
optimization and 2) the statistical yield optimization [2].

The geometric yield optimization [3], [4] is based on the definition
of worst case distances of each performance from its lower/upper
bound. The optimal design parameters are those which maximize the
worst case distances of the performances. Therefore, we are led to a
max min optimization problem, where the minimization determines
the worst case distances. The main drawbacks of this approach are
as follows.

1) The worst case distances must be computed for every perfor-
mance in every design choice. This gives raise to a complex
multiobjective optimization problem whose solution is expen-
sive to obtain.

2) The calculation of the worst case distance generally is a
nonlinear optimization problem with several local solutions.
Therefore, the method has to be run repeatedly in order to
know the best yield value that can be achieved.

Methods in this class are popular in yield optimization and are
employed by WiCkeD [5], a suite for circuit analysis, modeling, siz-
ing, and optimization. WiCkeD is the result of the research performed
in [2]–[4] and is widely used in the electronic circuit industry for
these kinds of applications. The WiCkeD optimization tool is based
on a sequential quadratic programming method, where information
on the derivatives are provided by finite differences.

The statistical yield optimization uses a Monte Carlo (MC) analysis
in order to evaluate the yield, and has the advantages of greater gener-
ality and higher accuracy. However, the large number of simulations
required to obtain an accurate measure of the yield makes the use
of MC analysis very expensive in iterative optimization. Therefore,
the efforts in literature are focused on decreasing the number of
simulations, and are based on two principal strategies.

1) Surrogate Models-Based Methods: These methods [6] create
macro-models for the yield over the design, operating, and
process variables. These strategies enable the practitioners to
explore the design alternatives with little computational effort,
but such models suffer from a tradeoff between the number of
simulations employed for the model training and its accuracy.
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2) Improved MC-Based Methods: These methods employ alterna-
tive methods to perform the MC analysis with less simulations,
but without losing information on the yield. Some are based
on the latin hypercube sampling (LHS) [7] or on the quasi-MC
method [8], or on computational intelligence techniques [9].

The approach proposed in this paper is a statistical yield optimiza-
tion methodology which takes inspiration from both the surrogate
models (SMs)-based methods and the improved MC-based methods.
As a matter of facts we combine the following.

1) An accurate SM, the support vector machine (SVM) [10], to
generate a reliable MC analysis and evaluate the yield.

2) An efficient DFO method [11] with fast and reliable conver-
gence properties to maximize the yield.

In our methodology the SVM only models the process variabilities.
Indeed, we embed the training of the SVM in the iterations of the
optimization algorithm: at every iteration the DFO algorithm selects
suitable design parameters, then an SVM is trained that only handles
the information on the process parameters. This SVM is then used to
generate an MC analysis with a large number of points to calculate
the objective function for the DFO algorithm. Therefore, our main
contributions are as follows.

1) The adoption of an efficient derivative free algorithm for circuit
yield optimization that, instead of using macro models over the
design, operating, and process variabilities to perform the MC
yield analysis, generates surrogates models only in the design
points of actual interest for the algorithm. Such SMs only
handle the process variabilities, resulting in accurate models
obtained with less simulations.

2) A numerical testing performed on two real consumer elec-
tronics circuits provided by STMicroelectronics, a worldwide
established company specialized in the design and produc-
tion of circuit for consumer electronics. Such experimental
results also include the comparisons with the results obtained
by using WiCkeD, the industrial tool currently employed by
STMicroelectronics for circuit design.

The DFO algorithm we adopt in our numerical testing is
DFL-box [11], a mixed-integer line-search based optimization
method. We are interested in mixed-integer methods because
often discrete parameters must be considered in analog sizing
(see [12], [13]).

In the following, we will refer to our method for yield optimization
as the SVM-DFO method.

II. PROBLEM FORMULATION

The aim of this paper is to determine the design variables xd in
such a way that in the production process the yield is maximized. The
yield corresponding to a design xd , under given operating conditions
x̄o is formally defined as

Y(xd) =
∫ +∞

−∞
. . .

∫ +∞

−∞
δ
(
xp

)
· pdf

(
xp

)
· dxp = E

{
δ
(
xp

)}
(3)

where

δ(xp) =
{

1, xp ∈ Ap

0, otherwise

with

Ap =
{
xp | li ≤ f

(
xd, x̄o, xp

)
≤ ui, i = 1, . . . , m

}

and pdf(xp) denotes the probability density function of the process
variables xp. The operating variables x̄o act as an external input, and
affect the yield according to their values.

As it is not possible to calculate analytically the integral in (3) we
measure the yield by means of the expectation value

Ŷ(xd) = Ê
{
δ
(
xp

)}
= 1

ns

ns∑

µ=1

δ
(

x(µ)
p

)
= nok

ns
(4)

where x(µ)
p , µ = 1, . . . , ns are normally distributed samples of

xp and ns is the number of samples in the MC analysis. Therefore,
the estimator is given by the number nok of the samples which sat-
isfy the specifications divided by the total number of samples ns. It
could be possible to use Ŷ given by (4) as objective function in the
optimization problem, but such objective function is not a continu-
ous function and does not capture the geometry of the problem, as
it treats in the same way any point out of Ap no matter how far it is
from the feasible region. Therefore, rather than maximizing Ŷ in (4)
we minimize the following function:

φ(xd) =
ns∑

µ=1

l∑

j=1

m∑

i=1

{
log

(
max

{
0, li − fi

(
xd, x̄o,j, x̄(µ)

p

)}
+ ε

)

+ log
(

max
{

0, fi
(

xd, x̄o,j, x̄(µ)
p

)
− ui

}
+ ε

)}

(5)

where ε is a positive parameter close to zero and l is the number of
operative cases. Function (5) penalizes how much the performances
of a point of the MC analysis are outside their bounds. The logarithm
is used to smooth the max function. This is a strategy generally used
to handle zero norm problems like in [14]. Therefore, the problem
we will solve is given by

min
xd

φ(xd)

s.t. xd ∈ Xd, xi
d ∈ Z, i ∈ Iz (6)

where Xd = {xd ∈ Rn : lixd
≤ xi

d ≤ ui
xd

, i = 1, . . . , n} is the feasible
set of the design variables and Iz indicates the set of indexes of the
design variables that can only assume integer values.

We point out that formulation (6) is the standard formulation for
bound constrained mixed-integer optimization problems. Since the
derivatives of function φ are not available, we need to resort to a
derivative free mixed integer optimization algorithm.

III. SVM SURROGATE MODEL-BASED

OPTIMIZATION PROCEDURE

In this section, we explain the procedure to generate the MC anal-
ysis used to evaluate the objective function φ in (5) and we introduce
the DFO algorithm used to minimize it.

As said in Section I, the MC analysis of the circuit is performed
using an SM given by SVM. The methods for the generation of the
SVM and the screening of the process parameters are explained in
detail in [10]. Every time the DFO algorithm needs to evaluate the
objective function φ in a design point xd for fixed values of the
operating variables x̄o, the procedure shown in Fig. 1 is executed as
follows.

1) The current values of the design parameters x̄d are given in
input to the MC generation subroutine together with the desired
number nt of samples used for training the SVM.

2) The subroutine generates a uniformly distributed LHS design
of experiment for nt values of the process variables with a
standard deviation equal to σ = 5. We remind the readers that
the LHS is created only in respect to the process variables.

3) The nt realizations of the process variables are given to the
simulator that runs nt simulations for the circuit performances,
creating the training set for the SVM.
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Fig. 1. Yield optimization procedure.

4) The nt samples are used for training the SVM as SM for the
performances of the circuit, given the values of the process
variables. For the validation of the model we apply a k-fold
cross validation with k = 5.

5) The SVM trained model is used instead of the simulator to
evaluate an MC analysis of ns = 10 000 samples of the process
variables.

6) The 10 000 values of the circuit performances are used to
calculate the value of (5) in x̄d .

As concerns the DFO algorithm for bound constrained mixed-integer
minimization of φ(xd), we adopt the algorithm described and ana-
lyzed in [11]. This algorithm can be thought as a distributed algorithm
in the sense that all coordinates are considered cyclically and a dif-
ferent search procedure is adopted depending on the variable type,
according to if it is continuous or discrete. Convergence of the algo-
rithm is attained when step lengths ≤ 10−3 along the coordinate axes
corresponding to the design variables do not decrease the objective
function φ.

It is well known in optimization computations that the most time
consuming tasks are the line searches, because in such searches many
computations of the objective function are carried out. Therefore, it is
of main concern to reduce the number of time consuming simulations
required to perform a reliable MC analysis of the circuit performances
subject to the process variations. The use of the SVM as SM of the
circuit is precisely intended to overcome this main difficulty.

IV. EXPERIMENTAL RESULTS

In this section, we report the numerical results obtained for two
circuits developed by STMicroelectronics, a dc–dc converter, and
a chain of 15 buffers. The numerical tests are performed at the
STMicroelectronics factory in Catania on a computational grid with
more than 800 processors. The processors used for the simulations
are chosen according to the load on the grid and different proces-
sors do not have the same performances. Therefore, we evaluate the
performance of the method using the total number of simulations per-
formed, since the main computational load of the procedure is due
to the simulations.

In order to ascertain the accuracy of the method we have performed
several tests lowering the number of nt samples in the training set
of the SVM. First, we have performed tests with nt = 50 training
samples, which we considered, by looking at the number of process
parameters in both circuits (9 in the dc–dc converter and 13 in the

Fig. 2. Circuit variables.

chain of buffers), a suitable number of samples in order to have an
accurate SVM SM. Then, we have performed tests with 40, 30, 20,
and 10 samples, tests that we report here only partially.

We first compute the optimal design parameters using the SVM-
DFO algorithm. Given these parameters we evaluate the yield in an
MC analysis with 10 000 samples using first the SVM SM and then
the circuit simulator (CS). Finally, we compare the yield obtained by
the SVM-DFO method and the yield obtained by the circuit designers
at STMicroelectronics using WiCkeD.

In these experiments, the operating variables x̄0 are fixed to their
worst case values, rather than to their nominal values, found by
using a worst case operating parameters optimization [2]. This is a
conservative practice adopted by STMicroelectronic, based on the
assumption that if the performance specifications are satisfied at
the worst cases, they are satisfied for any other feasible values of
the operating variables.

In the optimization procedures the initial point, provided by the
circuit designers, is the same for SVM-DFO and WiCkeD.

A. DC–DC Converter

The dc–dc converter of concern supplies power to different cir-
cuits composing AMOLED displays in portable consumer electronics
devices. We are interested in the optimal design of a specific section
of the converter, an integrated circuit shown in Fig. 2 and given by:

1) a chain of four CMOS inverter;
2) the high side (pMOS) and the low side (nMOS) output stages;
3) the driving signals N_UP, LX1.
As concerns the variables, we have the following variables.
1) Eight Design Variables:

a) K1–K4: The scale factor between pMOS and nMOS
(discrete);

b) Mult2–Mult4: The scale factor along the inverter chain
(discrete);

c) W_M3: The width of the last pMOS inverter in the chain
(continuous).

The first seven design variables (i.e., K1–K4, Mult2–Mult4)
can assume only the integer values xi

d ∈ {1, 2, . . . , 10},
i = 1, . . . , 7. The last variable, W_M3, must satisfy the bound
constraint 10−3 ≤ W_M3 ≤ 1.6 · 10−3.
We remark that the width of a specific component in the chain
can be easily obtained by the width of the last pMOS (e.g.,
W_M4 = W_M3/K4, W_M6 = W_M3/Mult4, . . . ).
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TABLE I
RESULTS FOR THE DC–DC CIRCUIT WITH DIFFERENT

SIZES OF THE SVM TRAINING SET

TABLE II
OPTIMAL DESIGN PARAMETERS FOR THE DC–DC CIRCUIT

2) Two Operating Variables:
a) V, T: Supply voltage and temperature.

3) Nine Process Variables: The process variables related to the
pMOS and nMOS devices after a sensitivity analysis have been
screened to nine, characterized by a Gaussian distribution with
mean value 0 and standard deviation equal to 1.

As concerns the performance features, they are given by the delays
of the circuit as follows.

1) Three Performance Features:
a) Delay1: It is the delay in turning on the circuit; for this

performance lower and upper bounds are l1 = 0 ns,
u1 = 21 ns.

b) Delay2: It is the delay in turning off the circuit; lower
and upper bounds are the same of Delay1.

c) DelayS: It is the delay symmetry defined as Delay1 −
Delay2. It is the performance, the designers are most
interested in. Lower and upper bounds are l3 = −3.15 ns,
u3 = 3.15 ns.

The values of the operating variables are fixed at four worst cases
values as follows.

1) Worst case for Delay1 and Delay2 at the lower bound of the
performances: V = 2.3 V, T = 120 ◦C.

2) Worst case for Delay1 and Delay2 at the upper bound of the
performances: V = 4.8 V, T = 120 ◦C.

3) Worst case for DelayS at the lower bound of the performance:
V = 2.3 V, T = −40 ◦C.

4) Worst case for DelayS at the upper bound of the performance:
V = 4.8 V, T = −40 ◦C.

In Table I we report the following.
1) The number of samples used for training the SVM as SM of

the circuit.
2) The number of the iterations of the DFO algorithm to reach

the optimal design point x∗
d .

3) The number of simulations required in the optimization
procedure.

4) The yield obtained by the SM with an MC analysis over 10 000
samples of process parameters.

5) The yield obtained by the CS using the same 10 000 samples.
In Table II, we compare the design point x∗

d and the design point
found by WiCkeD. We notice that the SVM-DFO algorithm reaches
the same optimal solution no matter the number of samples in the
training set. This behavior indicates that the method is not affected
by the decreasing accuracy of the SM.

In Table III, we report the results of the SVM SM-based method
compared to those obtained using WiCkeD. In particular, we report
the yield resulting for each performance and the total yield. It can
be seen that no method is superior to the other. WiCkeD performs
better for Delay1 upper and slightly better for Delay2 upper, while

TABLE III
COMPARISONS OF THE RESULTS BETWEEN SVM-DFO AND WICKED

Fig. 3. Cell in the chain of buffers.

SVM-DFO fares better for Delay2 lower and for DelayS upper. The
difference in performance between the two methods in the Delay1
upper case makes the total yield of WiCkeD superior. On the other
side, the most important performance is the DelayS making the solu-
tion obtained by SVM-DFO better from a design point of view
because it reaches the 100% of yield. As concerns the efficiency
of SVM-DFO, it reaches the optimal solution in much less simula-
tions than WiCkeD, therefore obtaining a valuable design point with
much less computational effort.

B. Chain of Buffers

The second circuit considered is a chain of 15 buffers that are used
to generate a programmable delay of the input signal. A signal can
be delayed by a programmable quantity by switching on or off each
buffer in the chain. The buffers are composed by two inverters and
consists of four MOS, two nMOS, and two pMOS devices, as shown
in Fig. 3.

The design parameters are the widths W and lengths L of the
four MOS devices constituting a buffer in the chain and the goal of
the optimization process is to minimize the low-to-high and high-
to-low propagation delays as well as their difference, and the power
dissipated by the circuit when all the 15 buffers of the chain are on.
Once the optimal buffer size has been found, all buffers in the chain
will have this optimal size.

The variables of the circuit are as follows.
1) Five Design Variables (Continuous):

a) WMNi: Width of transistor MNi, with 10 µm ≤ WMNi ≤
300 µm, i = 1, 2.

b) WMPi: Width of transistor MPi, with 10 µm ≤ WMPi ≤
300 µm, i = 1, 2.

c) L: Length of transistors, with 0.28 µm ≤ L ≤ 0.40 µm.
2) Two Operating Variables: The voltage V and the temperature T .
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TABLE IV
RESULTS FOR THE CHAIN OF BUFFERS WITH DIFFERENT

SIZES OF THE SVM TRAINING SET

TABLE V
OPTIMAL DESIGN PARAMETERS FOR THE CHAIN OF BUFFERS

TABLE VI
COMPARISONS OF THE RESULTS BETWEEN SVM-DFO

WITH nt = 20, nt = 50, AND WICKED

3) 13 Process Variables: The process parameters have been
screened to 13 variables affecting this circuit.

We consider m = 4 performance features as follows.
1) tHL: High-to-low propagation delay, with 100 ps ≤ tHL ≤ 3 ns.
2) tLH : Low-to-high propagation delay, with 100 ps ≤ tLH ≤ 3 ns.
3) tD: tHL − tLH, with 0 s ≤ tD ≤ 20 ps.
4) pw: The power dissipated by the circuit, with 4 mW ≤ pw ≤

6 mW.
From the preprocessing on the circuit, we can observe that

the higher the temperature is, the larger the two delays become.
Therefore, we only need to analyze the circuit with the tempera-
ture at its upper bound T = 150 ◦C. The voltage is set at the value
V = 1.2 V.

The results obtained by using the method are presented in
Tables IV and V. In the last row of Table V, we also report the
optimal design point found by WiCkeD. We notice that for nt ≥ 20
the accuracy of the SVM SMs in predicting the yield obtained by cir-
cuit simulations is quite satisfactory, with a value of the yield given
by the optimal design point larger than 95%. We notice also that
the optimal design parameters found are all close to each other, with
changes only at the third significant digit. This shows a satisfactory
level of reliability in the proposed methodology: even with really few
samples in the training set, and a limited computational effort, it is
possible to find good enough design parameters.

The comparison with the results obtained using WiCkeD is
reported in Table VI and is quite encouraging. In the second col-
umn, we report the results of WiCkeD for every performance and
the number of simulations, while in the third and fourth columns we
report similar results for SVM-DFO with nt = 20 and nt = 50 in the
training set.

It is possible to see that not only SVM-DFO uses significantly
less simulations than WiCkeD to find a suitable solution, but also
that the yield of the SVM-DFO is rather superior to the one obtained
by WiCkeD. In detail, only for the tD at the lower bound the yield
of the SVM-DFO is lower by a significant percentage, while at the
upper bound we observe a substantial improvement of SVM-DFO
with respect to WiCkeD in all the considered runs.

V. CONCLUSION

We have presented a novel approach for yield optimization in elec-
tronic circuit design that combines an accurate SM with an efficient
mixed-integer nonlinear derivative-free optimization algorithm. The
method has been experimented using two real consumer electronic
circuits, and the optimal design variables show high values of the
yield. The method also shows a good behavior when only a lim-
ited number of samples are used to train the SVM, and compares
well with WiCkeD. Taking into account the fact that WiCkeD is
being developed as a commercial tool since more than 15 years,
we can conclude that the method described in this paper in its first
stage of experimentation looks quite promising and worth of further
development effort.
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