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Abstract

This paper deals with sales forecasting in retail stores of large distribution. For several
years statistical methods such as ARIMA and Exponential Smoothing have been used
to this aim. However the statistical methods could fail if high irregularity of sales are
present, as happens in case of promotions, because they are not well suited to model
the nonlinear behaviors of the sales process. In the last years new methods based
on Learning Machines are being employed for forecasting problems. These methods
realize universal approximators of non linear functions, thus resulting more able to
model complex nonlinear phenomena. The paper proposes an assessment of the use of
Learning Machines for sales forecasting under promotions, and a comparison with the
statistical methods, making reference to two real world cases. The learning machines
have been trained using several configuration of input attributes, to point out the
importance of a suitable inputs selection.
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1 Introduction

This paper is concerned with sales forecasting in a retail store of large distribution. In past
times managers of these stores normally used their experience to predict the daily sales and
to decide the resupply quantities. In more recent years, with the development of computer
aided decision making, especially in the bigger firms, the use of mathematical methods has
became more and more widespread. In years 70s and 80s the principal methods used were
statistical methods based on time series autoregressive models, like the ARIMA method, the
Box-Jenkins’ method and the Winter’s exponential smoothing method (see e.g. [19]). The
data used by these methods are taken from the same time series that one wants to forecast,
and that can be therefore considered as an output series.
In the 90s the new mathematical model of Artificial Neural Network (ANN), based on the
brain’s neurons interconnection structure, was developed and employed also for forecasting
applications. A neural network has a more flexible structure than the usual statistical models,
and it bases its prediction not only on the output series, but also on several input series on
which the output may depend. These input series are called attributes of the output.
The basic structure of an ANN is a multilayer network of neurons, with one input layer, one
or more hidden layers and one output layer. Each neuron is characterized by an activation
function that depends on some parameters. Neurons are connected by weighted arcs. Making
an ANN able to perform a forecast corresponds to tuning its parameters and weights.
An alternative characterization of the artificial neuron of an ANN is obtained, rather than
in terms of activation functions, in terms of radial basis functions (RBF). The structure of
an ANN of RBF is given by the input layer, only one hidden layer and the output layer.
In the following we will make use, for sales forecasting, both of multilayer and RBF neural
networks.
By the end of 90s, a mathematical model different than ANN was also developed for clas-
sification and forecasting, named Support Vector Machine (SVM). The analytical roots of
SVM are in the Statistical Learning Theory, the algorithmic roots for its training are in the
duality theory of Mathematical Programming. Since its introduction, the SVM has been
considered a valid competitor of the ANN in the same fields of application.
Multilayer ANN, RBF ANN and SVM belong to the class of Learning Machines, machines
that adapt themselves by a training process using given sets of input and output data
so as to forecast outputs corresponding to different sets of given input data, not used for
training. In all cases the training process is performed by solving mathematical optimization
problems. Once trained, the learning machine provides a surrogate model of a complex
unknown phenomenon.
The literature on Learning Machines and their training is huge. We confine ourselves to
cite only some introductory references, like [3], [11] and [26] as concerns ANN, [5] and [8] as
concerns SVM, [4], [12], [21] and [24] as concerns, more in general, learning machines.
In this paper the complex phenomenon of concern is how the amount of sales of a given
commodity depends on different suitable input attributes. The aim of the paper is to assess
the relative effectiveness of the three kinds of learning machines considered before in sales
forecasting, also in comparisons with time series based methods, using the real data of a
retail store. A distinguishing features of the paper is that it focuses on the effects of an
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abnormal input attribute, that is occurrence of promotions on sales.
There are several works in literature that deal with these issues. One of the first works dating
to the 90s, [2] showed the superiority of ANN on the ARIMA method in sales forecasting.
A state of the art on the use of ANN in forecasting as in 1997 is provided in [28]. In [1]
several comparisons are made between learning machines and statistical methods, showing
from empirical results that learning machines have an edge on statistical methods especially
in periods of volatile economic conditions. Sales forecasts on a weekly basis using different
inputs are obtained in [22] and [23], proving again the efficacy of ANN. As concerns SVM,
their potential application in sales forecasting is dealt with in [16]. Other works focus on
the flexibility of learning machines. For example in [15] fuzzy neural networks, and in [7]
both fuzzy neural networks and clustering methods, are used, to improve neural networks
results. In [14] and [27] particular optimization procedures are used, like genetic algorithms
or swarm optimization, to improve the forecast and to obtain better results than the sta-
tistical methods. In a more general framework, see [9] and [25], the authors use learning
methods in the economical context of marketing for predicting consumer’s future choices.

The paper is organized as follows. In Section 2 we shortly describe the learning machines
employed for forecasting and the optimization problems to be solved in their training. In
Section 3 we consider the implementation issues to be taken into account in the practical
applications of learning machines. In Section 4 we describe the experimental environment
of our application, making use of real sales data from two retail stores of large distribution.
In Section 5 we report and analyze the results obtained in sales forecasting under promo-
tion policies using the different learning machines. Section 6 summarizes some concluding
remarks.

This work has been developed in cooperation with a specialized company vendor of a multi-
paradigm forecasting platform and willing to improve the sales forecast under difficult con-
ditions (slow movers products, sales under promotions).

2 Learning Machines

In this section we will describe shortly the mathematical models of the learning machines
that we use for forecasting, and the related optimization problems to be solved in their
training.

2.1 Multilayer artificial neural networks

The structure of a multilayer ANN is inspired by the brain’s structure of evolved organisms.
Basically, like the brain, it is a network formed by simple units that are linked by connections.
Every single unit of the network, called neuron, processes an input vector x ∈ #n weighted
by a vector of weights w ∈ #n according to an activation function g that compares the
weighted input vector wTx, with a threshold value θ, giving an output y(x) = g(wTx− θ).
A multilayer ANN is composed of:

• a number of n input units, without elaboration capabilities, that are associated to the
n attributes in input to the network,
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Figure 1: A two-layer artificial neural network.

• a set of N artificial neurons, characterized by activation functions, organized in L ≥ 2
layers with L − 1 hidden layers in which the output of every layer is the input of the
successive layer,

• an output layer with K ≥ 1 neurons that are associated to the outputs of the network,

• a set of oriented and weighted arcs that represent the connections between neurons.
We suppose that there are no connections between neurons of the same layer, and that
there are only forward connections without feedback ones.

As an example, we show in Fig. 1 a multilayer ANN with 2 input attributes, 1 output,
2 layers, 1 hidden layer with 3 artificial neurons. Note that a threshold value θ can be
considered as the weight of a dummy input equal to −1.

A basic result in the theory of ANN states that given any continuous function f(x), f :
#n → # defined on a compact set C ⊂ #n, it is possible to build a 2-layer network as the
one in Fig. 1 with the property that, for any ε > 0 it results

max
x∈C

|f(x)− y(x)| < ε,

provided that the activation function g is continuous and not polynomial. Therefore, a 2-
layer with 1 hidden layer ANN can be considered as an universal approximator for continuous
functions on compact sets.
On the basis of this result, we will adopt for our multilayer ANN the architecture described
in Fig. 1. With this kind of architecture the output function of the network y(x) is given
by:

y(x) =
N∑

i=1

vjg(w
T
j x− θj),

where:

• wj: n−vector of weights of the connection between each unit of the input layer and
neuron j of the hidden layer,
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• θj: threshold value for neuron j,

• vj: weight of the connection between each neuron of the hidden layer and the output
neuron.

As to the activation function g, in our application we will use the sigmoid function:

g(t) =
1

1 + e−σt
,

with σ = 0.5.
Once specified the architecture and the activation function, the knowledge gained by train-
ing is stored in the connections between neurons, in particular it is stored in the weights
associated with every connection, including the dummy ones that may represent the thresh-
olds. The learning process of the ANN consists in adjusting wj, θj, vj, j = 1, . . . , N, in such
a way that the output y(x) of the ANN is able to predict the value f(x) produced in a given
environment by the input x.
The learning process makes use of a training set

T = {(xp, yp), xp ∈ #n, yp ∈ #, p = 1, ..., P},

where P is the cardinality of the set, (xp, yp) is an input-output pair, a sample of the relation
that we want to reproduce. Let us denote by w the n × N dimensional vector collecting
as subvectors the weights {wj, j = 1, . . . , N}, by θ and v the n−vectors with components
θj, vj, j = 1, . . . , N , and by y(xp;w, θ, v) the output of the network given the input xp and the
weights w, θ, v. Then the training is based on the solution of an unconstrained optimization
problem of the kind:

min
w,θ,v

E(w, θ, v) =
1

2

P∑

p=1

(y(xp;w, θ, v)− yp)2 + γ1‖w‖2 + γ2‖θ‖2 + γ3‖v‖2, (1)

where γ1, γ2, γ3 > 0 and ‖.‖ denotes the Euclidean norm.
In the function E(w, θ, v) the first term measures the distance between the output of the
network y(xp;w, θ, v) and the real output yp. As to the remaining three terms, they add a
penalty on the norm of the weights w, θ, v that makes compact the level sets of the objective
function E(w, θ, v), and regularizes the class of functions realized by the network; the first
effect is beneficial for the convergence of the training algorithm, the second one is exploited
in cross-validation of the network, as we will mention in the following.

2.2 Neural networks of radial basis functions

The neural networks of RBF have been introduced as a tool for interpolating multivariate
functions. Given again a set

T = {(xp, yp), xp ∈ #n, yp ∈ #, p = 1, ..., P}, (2)
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where (xp, yp) are respectively arguments and values of a function f(x), f : #n → #, and
given a continuous radial basis function φ(r),φ : #+ → #, a RBF interpolation of f(x) is a
function y(x) obtained as a weighted sum of terms φ‖(x− xp)‖, with weights vp:

y(x) =
P∑

p=1

vpφ(‖x− xp‖), (3)

and with the property that

y(xp) = f(xp) = yp, p = 1, . . . , P. (4)

The function φ is called radial basis function from the fact that its argument is the radial
distance r = ‖x−xp‖. One of the most used RBF is the multi quadratic inverse RBF, given
by:

φ(‖x− xp‖) = (‖x− xp‖2 + σ2)−1/2,

that we adopt in our application, with σ = 0.5.
We note that condition (4) imposes to find a function y(x) that matches perfectly the pairs
of the set T . This requires the solution of the P × P system of equations

y(xq) =
P∑

p=1

vpφ(‖xq − xp‖), q = 1, . . . , P,

in the unknowns vp, p = 1, . . . , P . Since this system may be very large in practical applica-
tions, the so called generalized RBF have been introduced, where the interpolating function
y(x) is obtained as:

y(x) =
N∑

i=1

viφ(‖x− ci‖), (5)

where N ≤ P and ci ∈ #n, i = 1, . . . , N are so-called centers of the RBF.
From (5) we see that the function y(x) can be considered as the output of a 2-layer ANN,
where N neurons in the hidden layer process the input x by means of the activation function
φ(||x− ci‖), i = 1, . . . , N , and the output neuron performs the weighted sum of the outputs
of the N neurons with weights vi, i = 1, . . . , N .
The fact that the generalized RBF ANN can be viewed as a 2-layer ANN allows to demon-
strate that a generalized RBF ANN enjoys the same property of being an universal approx-
imator of continuous function on compact sets, in the same sense of the 2-layer ANN.
The training problem of a generalized RBF neural network can be formulated in a way
similar to that of the 2-layer ANN: denote now by v and c the N -vectors collecting the
weights vi, i = 1, . . . , N and centers ci, i = 1, . . . , N , and by y(x; v, c) the output of the
generalized RBF ANN given by (5); then the training consists in solving the unconstrained
minimization problem:

min
v,c

E(v, c) =
1

2

P∑

p=1

(y(xp; v, c)− yp)2 + γ1‖v‖2 + γ2‖c‖2, (6)

where γ1, γ2 > 0. For the terms on the r.h.s. of (6) the same considerations made for the
r.h.s. of (1) can be repeated.
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2.3 Support vector machines

The SVM have been developed in the context of Statistical Theory of Learning, originally
for solving classification problems. Later their use has been extended to regression problems.
As before, let T given by (2) be a set of input-output samples (xp, yp). A linear SVM aims
to realize a linear regression function

y(x) = wTx+ b

with the property that for each sample the regression error y(x)− yp is bounded by a value
ε ≥ 0 so that:

|yp − wTxp − b| ≤ ε, p = 1, . . . , P,

and with the property of being as much flat as possible, where flatness is measured by the
squared norm of w. Therefore we are lead to the problem:

minw,b
1
2‖w‖

2

|yp − wTxp − b| ≤ ε, p = 1, . . . , P
(7)

However, problem (7) could be infeasible. To tackle this possible failure, slack variables
ξp, ξ̂p, p = 1, . . . , P are introduced, and Problem (7) is modified as follows:

minw,b,ξ,ξ̂
1
2‖w‖

2 + C
∑P

p=1(ξ
p + ξ̂p)

wTxp + b− yp ≤ ε+ ξp

yp − wTxp − b ≤ ε+ ξ̂p p = 1, . . . , P,
ξp, ξ̂p ≥ 0.

(8)

where the second term in the objective function provides a measure on how much the re-
gression errors exceed the value ε.
Problem (8) is a quadratic convex problem in the variables w, b, ξ, ξ̂ , and therefore the solu-
tion can be found by solving its Wolfe dual problem, which is easier to be solved. Denoting
by λp, λ̂p, p = 1, . . . , P the dual variables corresponding to the Lagrange multipliers associ-
ated with the constraints on the regression errors, and by λ, λ̂ the vectors with components
λp, λ̂p, p = 1, . . . , P , the dual problem is obtained as:

minΓ(λ, λ̂) = 1
2

∑P
p=1

∑P
q=1(λ̂

p − λp)(λ̂q − λq)(xp)Txq

−∑P
p=1(λ̂

p − λp)yp + ε
∑P

p=1(λ̂
p + λp)

∑P
p=1(λ̂

p − λp) = 0
0 ≤ λp ≤ C p = 1, . . . , P
0 ≤ λ̂p ≤ C p = 1, . . . , P

(9)

The structure of Problem (9) is of main interest, because it can be exploited for generalizing
the linear SVM to the nonlinear SVM. To this aim it is sufficient to substitute the inner
product (xp)Txq with the value k(xp, xq) given by a suitable kernel function k : #n×#n → #.
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Since we will make use of nonlinear SVM, the problem of concern becomes the following:

minΓ(λ, λ̂) = 1
2

∑P
p=1

∑P
q=1(λ̂

p − λp)(λ̂q − λq)k(xp, xq)

−∑P
p=1(λ̂

p − λp)yp + ε
∑P

p=1(λ̂
p + λp)

∑P
p=1(λ̂

p − λp) = 0
0 ≤ λp ≤ C p = 1, . . . , P
0 ≤ λ̂p ≤ C p = 1, . . . , P,

(10)

where we adopt, as kernel function, the commonly used Gaussian kernel:

k(xp, xq) = exp(−σ‖xp − xq‖2),

with σ = 1/n.
Problem (10) is a quadratic convex problem in the unknowns λ, λ̂. Once solved, with solution
λ∗, λ̂∗, the nonlinear regression function y(x) for the set of input-output samples T is given
by

y(x) =
P∑

p=1

((λ̂p)∗ − (λp)∗)k(x, xp) + b∗, (11)

where b∗ can be determined making use of the complementarity condition.
From (11) it appears that the SVM can be seen as a neural network of RBF, with P radial
basis functions given by the kernels k(x, xp), p = 1, . . . , P weighted by the coefficients ((λ̂p)∗−
(λp)∗) and one dummy input equal to 1 weighted by b∗. Therefore the property of being an
universal approximator of continuous functions on compact sets extends also to the SVM.

3 Implementation issues

Once the kind of a learning machine for forecasting has been chosen, its development requires
the availability of:

• a data set,

• an optimization procedure,

• a validation procedure.

In this section we will shortly describe the three items.

3.1 Data set

The data set is the set of available input-output samples {(xp, yp), xp ∈ #n, yp ∈ #, p =
1, . . . , R}, where R is usually very large. It must be divided into three subsets:

• the training set T = {(xp, yp), p = 1, . . . , P} used by the optimization procedure in
the training phase,

8



• a validation set V = {(xp, yp), p = P + 1, . . . , Q} used for validating the machine as a
tool for generalizing its forecasting ability also with respect to input-output pairs that
are not in the training set,

• a test set S = {(xp, yp), p = Q + 1, . . . , R} used for measuring the quality of forecast
produced by the resulting learning machine within the data set.

Let xp an input value, yp the corresponding output and y(xp) the value predicted by the
machine after the learning and validation procedures. Then the test set S is used to compute
the mean absolute error MAPE(S) value:

MAPE(S) = 1

(R−Q)

R∑

Q+1

|y(xp)− yp|
max{1, |yp|} , (12)

which provides an overall measure of the quality of the forecast. The term max{1, |yp|} in
the (12) is used in order to avoid that the error increases to infinity in case of zero sales for
a single day of the prediction .

3.2 Optimization procedure

As shown before, the training of a learning machine turns out to be an optimization problem,
with two significant features: the first one is that the problem is usually of very large scale,
the second one is that for every machine it has a particular structure, so that the second
feature may in some way balance the first one. Indeed very specialized, and therefore efficient,
algorithms have been proposed for the training of learning machines, that take explicitly into
account the problem structure, see for instance [10], [11], [17], [18], [20]. In our application
we have used the Truncated Newton Method of [13] for the unconstrained optimization
problems (1), (6) arising in the training of multilayer and RBF ANN, and the algorithm
available through [6] for the constrained optimization problem (10) of SVM training.

3.3 Validation

In the optimization problem to be solved in the training procedure, the structure of a learning
machine is given, as well as the values of the parameters that appear in the optimization
model. For instance, in training a RBF ANN, when solving problem (6), the number N of
neurons and the values of coefficients γ1 and γ2 are given. The validation procedure aims
to determine the complexity of the learning machine and the values of the parameters that
appears in the optimization model so as to obtain the best performances in forecasting.
Indeed, in training a learning machine, there is a tradeoff between the capacity of the machine
to interpolate the training samples and its capacity to predict values that do not belong to
the training set. Making again reference to a RBF ANN, if the number N is small, the
machine could not be able to realize the function that links the input and the output; on
the other hand, if N is large the phenomenon of overfitting may occur, that is the machine
interpolates very well the training samples, but becomes inefficient on the samples of the test
set, since it looses its generalization proprieties with respect to samples not in the training
set.
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The validation procedure is performed by using the MAPE(V) value, defined in a way
similar to the MAPE(S), with reference to the validation set rather than to the test set:

MAPE(V) = 1

(Q− P )

Q∑

P+1

|y(xp)− yp|
max{1, |yp|} .

As concerns the neural networks considered before, both two-layers and RBF, we have
to choose the number of neurons N . A simple methodology consists in computing the
MAPE(V) value in correspondence to increasing values of N . Usually we observe that, by
increasing N , the MAPE(V) value first decreases, and then begins to raise. This is the
symptom that the network is beginning to overfit the training data, so that we stop the
increase of N . In summary, we train a sequence of networks with increasing values of N ,
starting from a small value, until the MAPE(V) value begins to rise.
In the optimization model of two-layer and RBF ANN, we have also the possibility of tuning
the γ parameters. The optimal values of the γ parameters can be determined by using again
a validation technique. Increasing γ helps the generalization capacity of the network because
it puts a limitation on the choice of weights’ values, that corresponds to making more regular
the output function realized by the network. From an algorithmic point of view, choosing
the value of γ high enough simplifies the optimization problem by convexifing the objective
function.
As concerns the SVM, in the optimization model (8) we have to give values to the parameter
ε that bounds the regression errors and to the parameter C which weights the fact that the
regression errors exceed the value ε. Given ε, increasing C has similar effects as increasing γ,
of making more regular the output function realized by the machine. However, if exaggerated,
it produces the trouble of overfitting. The validation procedure for SVM is similar to that
used in the ANN: for different values of ε we train a sequence of SVM increasing the value
of C until the MAPE(V) error begins to rise. Often the value ε = 0.1 is adopted [6], and
the validation procedure reduces to determine only the value of C.

4 Experimental environment

In this section we describe how the learning machines have been used for sales forecasting.
In our application, we used two input-output time series, taken from two different retail
stores of the same chain of large distribution. As concerns the output y we are interested in
the daily sales of a particular kind of pasta of a popular brand; as concerns the input vector
x, we will describe below which attributes have been taken into account. In particular we
are interested in capturing the effects of promotion policies on the sales. The input-output
samples used for training, validation and testing cover three years: 2007, 2008 and 2009.
In particular, the years 2007 and 2008 have been used only for training and validation, the
year 2009 for forecasting and testing. The first time series is taken from retail store #1,
which is characterized by a bad storage management, so that a stockout occurs often. This
brings the difficulty of not knowing whether an output sample is zero because there was no
demand or because there was stockout. This series can be considered unreliable because
of the presence of an high number of stockouts. Nevertheless we analyze this kind of data
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Figure 2: Sales of store #1 (2007-2008).

because we want to test the reliability of these forecasting tools on real datasets that are
not in ideal conditions. The second series is taken from store #2, which has a good storage
management, so that stockout happens rarely. The sales in the years 2007 and 2008 are
drawn in Fig.2 and Fig. 3, respectively for store #1 and store #2. It appears clearly that
sales increase during promotion periods, that have been 3 during 2007 and 4 during 2008.
In our forecasting we will use as input attributes subsets of the following set of 13 attributes:

• 9 calendar attributes, linked to the specific day in which the output is given: month,
day of the month and day of the week. The day of the week is represented by 7 mutually
exclusive boolean attributes. These attributes bring into consideration typical human
behaviors and customs. For example in Saturday it is expected to sell more than in
the other days of the week.

• 4 problem specific attributes: one boolean attribute whose value is one if there is
promotion of the product in that day, zero otherwise, number of hours the store is
open that day and the daily price of the product; moreover the overall number of
receipts released that day in the store, which accounts for the overall volume of sales.

As concerns the last attribute listed before, that is the number of receipts released in the
same day for which the forecast is done, we point out that of course its value is not known.
Therefore we implemented a SVM for forecasting the number of receipts per day. This SVM
used the 2007 series for training and the 2008 series, divided into two, for validation and
testing. Then we used this SVM to produce a forecast of the number of receipts in the 2009.
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Figure 3: Sales of store #2 (2007-2008).

This SVM uses in input 11 attributes: the 9 calendar attributes also used in forecasting
sales, the number of hours the store is open and a last attribute that indicates if in that
day are expected high or low sales. This attribute is 0 in normal days, 1 in days before
festivities, -1 when the store is open on Sundays and 2 on the day of Christmas eve and
new year eve. A forecasted attribute can be considered a risky choice for the robustness
of the final predictive model. However as we already said, we consider this attribute very
important in the prediction and it also can be used in place of the calendar attributes in
order to avoid the curse of dimensionality.
We realized several experiments changing the attributes in input:

• in the first experiment we use 4 inputs: promotion, number of opening hours, price of
the product and number of daily receipts (forecast);

• in the second experiment we use 12 inputs: promotion, number of opening hours, price
of the product and the nine calendar attributes;

• in the last experiment we use all 13 attributes listed before.

In the 4 inputs experiment we test the the goodness of final prediction with the forecasted
attribute. In the 12 inputs experiment we test the goodness of the prediction with the
calendar attributes, but without the forecasted number of receipts. With the final experiment
with 13 attributes we test the goodness of the prediction with all the attributes together.
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The forecasting is executed by adopting the sliding window method often used in this kind
of applications. After eliminating the days in which the store was closed, we divided the
year of test, the 2009, into 10 intervals of the same size. Store #1 has 10 intervals made of
36 days, because it was opened in the Sunday, while store #2 has 10 intervals made of 32
days because of the Sunday closure.
We make reference to the time series of store #1 in order to explain how we proceeded. The
10 sets of samples used for testing are denoted by Si, i = 1, . . . , 10. The tenth interval of 36
input-output samples of the year 2008 is used first as validation set V ; the remaining samples
of the year 2008 and the samples of the whole year 2007 are used first as training set T .
For different learning machines, belonging to the three classes of Multilayer ANN, RBF ANN,
SVM, we first perform the training procedure using the set T and the validation procedure
using the set V , so as to select the best performing learning machine in each class; then we
use the selected machine to perform the forecast of the output samples in the test set S1,
and we measure the quality of the forecast by the MAPE(S1) value.
Then we add the set V to the training set and we take the set S1 as new validation set,
in order to perform the forecast of the output samples in the set S2 and to measure the
MAPE(S2) value. The procedure is repeated, until we reach the last interval of the year
2009: in order to forecast the output samples in the set S10 we use as training set the
samples of the whole years 2007 and 2008, as well as the samples in S1,S2, . . .S8, and we
use as validation set the samples in S9.

The time series of store #2 has been treated in the same way, the only difference being in
the number of samples in each interval, 32 instead of 36, due to a larger number of days in
which the store was closed.

We use this method of prediction on the data series because we want to realize the prediction
from the point of view of a practitioner who realizes a monthly prediction with the most
updated data available.

5 Computational results

In this section we report the results obtained in forecasting the sales during 2009, making use
of the different Learning Machines, and we make a comparison with the forecasts provided
by traditional statistical methods. In particular, for each store we run 12 computations, 9
for the three different learning machines by using the three different configuration of input
attributes, and 3 for statistical methods, the first method being ARIMA, the second one
being the exponential smoothing (ES) and the third one being the Holt-Winter variation of
exponential smoothing (HWES).

5.1 Forecast of daily receipts

Preliminarily we show the results obtained using a SVM for forecasting the number of daily
receipts in 2009, used as input attribute. As already said, we used the samples of 2007 for
training and the samples of 2008 for validation and testing, with the 11 input attributes listed
in Section 4. In particular the validation was performed by taking ε = 0.1 and adjusting the
value C heuristically.
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Figure 4: Daily receipts forecast for store #1 (2009).
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Figure 5: Daily receipts forecast for store #2.
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We terminated the validation procedure for store #1 with C = 3 and for store #2 with
C = 1. We draw in Fig. 4 and in Fig. 5 the actual and the forecast number of receipts in
2009, respectively for store #1 and store #2. The corresponding values of MAPE(2009)
are 0.47 for store #1 and 0.51 for store #2.
We can see from Figures 4 and 5 that the forecast of daily receipts produced by the SVM is
quite satisfactory.

5.2 Sales forecast in store #1

The results obtained after training and validating the three kind of learning machines, each
one with three different configuration of input attributes, denoted by 4i, 12i, 13i are given
in terms of MAPE(Si), i = 1, . . . , 10 in Table 1. In the same table are given the MAPE(Si)
values obtained using the three statistical methods.

Method 1 2 3 4 5 6 7 8 9 10 Mean

Mul.4i 1.86 0.52 0.80 0.88 1.31 0.54 0.71 0.78 0.54 0.78 0.87
Mul.12i 2.42 0.52 0.96 0.98 1.90 0.76 0.51 0.94 0.80 0.82 1.06
Mul.13i 2.80 0.54 0.58 1.22 1.68 0.68 0.54 0.76 0.71 0.84 1.03

RBF4i 1.71 0.52 0.80 0.86 1.40 0.52 0.62 0.67 0.53 0.48 0.81
RBF12i 1.90 0.62 0.85 0.82 1.83 0.59 0.54 0.69 0.62 0.58 0.90
RBF13i 3.56 0.60 0.95 0.80 1.94 0.60 0.47 0.74 0.55 0.37 1.06

SVM4i 2.14 0.56 0.88 0.90 1.46 0.51 0.66 0.55 0.49 0.54 0.87
SVM12i 2.10 0.50 0.87 0.71 1.63 0.50 0.53 0.62 0.51 0.51 0.85
SVM13i 2.39 0.52 0.82 0.75 1.58 0.51 0.53 0.58 0.51 0.47 0.87

ARIMA 2.26 0.62 0.91 1.19 2.32 0.51 0.50 0.83 0.84 0.71 1.07
ES 3.01 0.56 0.87 1.14 2.12 0.49 0.53 1.12 0.94 0.97 1.17

HWES 2.84 0.58 1.07 1.24 2.26 0.54 0.70 1.07 1.06 0.98 1.24

Table 1: MAPE(Si) for store #1

From the table we get that, among the learning machines, the best mean performance is
given by RBF4i, while among the statistical methods it is given by ARIMA. The values
of N resulting by the validation phases of RBF4i are respectively, for the 10 intervals,
N = (19, 19, 35, 22, 10, 39, 12, 12, 43, 11); the values of γ1, γ2, after some preliminary tests,
have been adjusted to the constant values γ1 = γ2 = 0.01.
We note that for every learning machine, good results are obtained with the 4 inputs con-
figuration. We underline that the receipts attribute in the 4i computations brings with it
information concerning the calendar attributes, and this is probably the reason for these
good performances.
We recall that store #1 is characterized by a bad stock management, so that several stockouts
occur, as can be seen from Fig. 2. This makes forecasting difficult, and explains the relative
high values of theMAPE(Si) entries in Table 1. However, in all cases the Learning Machines
perform better than statistical methods, thus confirming that Learning Machines are more
suited than statistical methods for forecasting series with irregular behavior.
In Fig. 6 we draw the actual sales in store #1 during 2009, and the forecasts produced by
RBF4i and ARIMA. Promotion periods are displayed by vertical dashed lines. It appears
that mainly in these periods RBF4i outperforms ARIMA.
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Figure 6: Actual and forecast sales in store #1 during 2009.
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5.3 Sales forecast in store #2

In Table 2 we report the results obtained for store #2, organized in the same way as in
Table 1. From the table it appears that, among the learning machines, the best results
are given by SVM4i, and among the statistical methods by HWES. Assuming ε = 0.1,
the values of C resulting from the validation phases of SVM4i are respectively, for the 10
intervals, C = (2, 2, 2, 1, 1, 1, 1, 38, 14, 1). In this case for every learning machine the best
results are obtained with the 4 inputs configuration, thus confirming the effectiveness of the
daily receipts attribute.

Method 1 2 3 4 5 6 7 8 9 10 Mean

Mul.4i 0.38 0.32 0.23 0.24 2.08 0.36 0.32 1.05 0.56 0.58 0.61
Mul.12i 1.45 0.38 0.51 0.33 2.06 0.35 0.39 1.54 0.72 0.59 0.83
Mul.13i 0.51 0.36 0.34 0.29 2.32 0.55 0.36 1.07 0.74 0.50 0.70

RBF4i 0.36 0.31 0.24 0.24 2.41 0.44 0.31 1.04 0.56 0.53 0.64
RBF12i 0.54 0.40 0.31 0.29 2.44 0.42 0.38 1.16 0.77 0.46 0.72
RBF13i 0.43 0.35 0.31 0.27 2.23 0.47 0.37 0.93 0.59 0.57 0.65

SVM4i 0.36 0.31 0.23 0.26 1.96 0.41 0.32 1.01 0.57 0.63 0.61
SVM12i 0.66 0.31 0.26 0.24 2.03 0.42 0.34 0.99 0.70 0.61 0.66
SVM13i 0.53 0.29 0.26 0.23 1.97 0.44 0.33 1.06 0.64 0.60 0.64

ARIMA 0.45 0.37 0.25 0.25 2.01 0.48 0.36 1.18 0.62 0.61 0.67
ES 0.44 0.33 0.26 0.27 1.99 0.46 0.36 1.24 0.66 0.66 0.67

HWES 0.46 0.33 0.27 0.27 1.97 0.43 0.33 1.21 0.69 0.65 0.66

Table 2: MAPE(Si) for store #2

We note that the mean values in the last column of Table 2 are significantly smaller than
the mean values in Table 1. This is probably due to the fact that stockouts in store #2 are
much less frequent that in store #1, so that the series of sales results more regular. For the
same reason in case of store #2 the statistical methods compare better with the learning
machines than in the case of store #1.
In Fig. (7) we draw the actual sales in store #2 during 2009, and the forecasts produced
by SVM4i and HWES. Promotion periods are again displayed by vertical dashed lines, and
again it appears that in these periods SVM4i outperforms HWES.

We conclude this section by pointing out that, looking at the results of the 20 tests reported
in Tables 1 and 2, we see that both SVM and RBF perform better 7 times on 20, the 35%
of the total, that Multilayer ANN performs better 5 times on 20, the 25% of the total, while
the statistical methods are better than the others only once on 20, the 5% of the total.

6 Conclusions

We have described how Learning Machines can be applied to sales forecasting, making also
a comparison among them. The application has concerned the daily sales of a kind of pasta
in two retail stores, in the presence of promotion. We have pointed out the importance of
a suitable selection of input attributes for the machines. From the computational results
we have shown that Learning Machines provide a valuable tool for sales forecasting, even
if it does not appear that one kind of machine is definitively superior to the others. As a
conclusion, we claim that any sales manager could take advantage by enlarging the class of
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Figure 7: Actual and forecast sales in store #2 during 2009.
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methods employed for sales forecasting, so as to include, with the more traditional statistical
methods, also the Learning Machines described in this paper.
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