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Abstract

Yield optimization is a challenging topic in electronic circuit design. Methods for

Yield optimization based on Montecarlo analysis of a circuit whose behavior is re-

produced by simulations usually require too many time expensive simulations to be

e↵ective for iterative optimization. In this work we take inspiration from both the

Montecarlo analysis based methods and machine learning methods in order to realize

a methodology able to perform the Yield optimization in a more e�cient way. The

method we propose tackles the Yield optimization problem by embedding the train-

ing of a support vector machine surrogate model and the generation of a Montecarlo

analysis into the optimization procedure. We report the numerical results obtained by

using the proposed method for the design of two real consumer circuits provided by

ST Microelectronics, and we compare these results with the ones obtained using the

industrial benchmark currently adopted at ST Microelectronics for Yield optimization.

These preliminary results show that the method is promising to be very e�cient and

capable of reaching design solutions with high values of the Yield.
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1 Introduction

We propose a methodology to maximize the Yield in the electronic circuit design process.
The behavior of a circuit is generally described by its performances fi, i = 1, . . . ,m such
as the Gain, the Delay between two waveforms, the Phase Margin, the Dissipated Power,
and so on. For a circuit to be in full working order, all the m performances fi must satisfy
certain specifications that are generally given in terms of lower and upper bounds:

li  fi(xd, xo, xp)  ui i = 1, . . . ,m, (1)

where:

• xd, Design Variables: these variables represent the geometrical dimensions of the com-
ponents in the circuits (e.g. channel widths and lengths);

• xo, Operating Variables: these variables model operating and environmental conditions
(e.g. supply voltage and temperature);

• xp, Process Variables: these variables are usually subject to uncertainty due to fluctua-
tions in the manufacturing process and are generally modelled by Gaussian or Uniform
Distributions (e.g. oxide thickness, threshold voltage and channel length reduction).

We denote by A the feasible set of the design, operating and process variables:

A = {(xd, xo, xp) | li  fi(xd, xo, xp)  ui, i = 1, . . . ,m}. (2)

The Yield represents the probability of a circuit to be in full working order for a certain
design choice xd, subject to given operating variables xo and taking account of the process
and environmental variations xp.
In recent years there is an increasing interest in Yield optimization due to both the increas-
ing number of components in a single circuit and the decrease of its size. Handling these
conflicting trends is becoming more and more di�cult, because they enhance the sensitivity
of the circuit performances to the statistical variations in the manufacturing process, such as
variations in intra- and inter-die channel length, oxide thickness, doping concentration and
so on.

Some major challenges come from the need of making the final design robust toward these
variations. This implies the use of accurate computer-aided design processes with computer
simulations employed in order to evaluate the circuit performances. Circuit simulations are
based on the circuit topology, the mathematical models of the underlying devices, the design,
operating and process parameters. Simulations consist in the numeric solution of usually
non-linear circuit equations which are used for evaluating the performances of interest. Sim-
ulations are generally very time expensive and this reason prompts the interest in developing
methods capable of performing reliable analysis with the use of less simulations as possible.

Various optimization methods have been applied to the problem of robust circuit design.
For instance, in [7] the authors describe a robust derivative free method for circuit Yield
optimization, in [8] the authors use a trust region type algorithm to solve a bilevel circuit
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optimization problem, in [5, 12, 14] Geometric Programming has been used in a series of
papers for several tasks in circuit design.

Focusing on Yield optimization, two classes of methods are mainly adopted, the Geometric
Yield Optimization and the Statistical Yield Optimization [9].

The Geometric Yield Optimization [2, 3] is based on the definition of worst case distances
of each performance from its lower/upper bound. The optimal design parameters are those
which maximize the worst case distances of the performances. Therefore we are led to a
maxmin optimization problem, where the minimization determines the worst case distances.
The main drawbacks of this approach are:

• the worst case distances must be computed for every performance in every design
choice. This gives raise to a complex multi-objective, derivative free optimization
problem whose solution is expensive to obtain especially with large dimensions of
process parameters and performance features;

• the calculation of the worst case distance generally is a non-linear optimization problem
with several local solutions. Therefore the method has to be run repeatedly in order
to know the best Yield value that can be achieved;

these kinds of methods are among the most popular in Yield optimization and are employed
by WiCkeD [1], a suite for circuit analysis, modeling, sizing, optimization and surrogate
model generation. WiCkeD is the result of the research performed on the geometric Yield
analysis and is considered an industrial standard for these kinds of applications.

The Statistical Yield Optimization uses a Montecarlo (MC) analysis in order to evaluate
the Yield, and has the advantages of greater generality and higher accuracy [13]. However
the large number of simulations required to obtain an accurate measure of the Yield makes
the use of MC analysis really expensive and almost impracticable in iterative optimization.
Therefore the e↵orts in literature are focused on decreasing the number of simulation while
preserving the accuracy of the Montecarlo analysis. These e↵orts are based on two principal
strategies:

• Surrogate Models based methods [4]: these methods create macro-models for the Yield
over the design, operating and process variables. These strategies enable the practi-
tioners to explore the design alternatives with little computational e↵ort, but such
models su↵er from a trade-o↵ between the number of simulations employed for the
model training and its accuracy;

• improved MC based methods: these methods employ alternative methods to perform
the MC analysis with less simulations, but without losing information on the Yield.
Some are based on the Latin Hypercube Sampling (LHS) [19] or the Quasi-Montecarlo
method [18]. Other methods employ strategies to avoid useless MC simulation and use
advanced optimization strategies to increase the rate of convergence [10].

The approach proposed in this paper is a Statistical Yield Optimization methodology which
takes inspiration from both the Surrogate Models based methods and the improved MC
based methods. As a matter of facts we combine:
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• an accurate surrogate model, the Support Vector Machine (SVM) [20], to generate a
reliable MC analysis and evaluate the Yield;

• an e�cient derivative free optimization (DFO) method with fast and reliable conver-
gence properties to maximize the Yield.

The MC analysis has to consider only the process variabilities when is generated, and in our
methodology the SVM only models the process variabilities with the aim of being as much
accurate as possible. Consequently we embed the training of the SVM in the iterations of
the optimization algorithm. At every iteration the DFO algorithm selects suitable design
parameters, then a SVM is trained that only handles the information on the process param-
eters. This SVM is then used to generate a MC analysis with a large number of points to
calculate the objective function for the DFO. Therefore, our main contributions are:

• The adoption of an e�cient derivative free algorithm for circuit Yield optimization that,
instead of using macro models over the design, operating and process variabilities to
perform the MC Yield analysis, generates surrogates models only in the design points
of actual interest for the algorithm. Such surrogate models only handle the process
variabilities, resulting in accurate models obtained with less simulations;

• A numerical testing obtained on two real consumer electronics circuits provided by ST-
Microelectronics, a well known company specialized in the design and production of
circuit for consumer electronics. Such experimental results also include the comparisons
with the results obtained by using WiCkeD, the industrial standard currently employed
by ST-Microelectronics for circuit design.

The DFO algorithm we adopt in our numerical testing is DFL-box [11], a mixed-integer line
search based optimization method. We are interested in mixed-integer methods because often
discrete parameters must be considered in analog sizing. Such parameters predominantly
appear when the layout properties should be considered, like in circuits where the transistor
lengths and widths must lie on a manufacturing grid or if transistor multipliers should
be used for scaling. The creation of methods suitable for handling discrete variables in
circuit optimization is an important topic [15, 16] in circuit design because it is well known
that applying continuous optimization and then rounding the results generally leads to sub-
optimal solutions. Showing that the proposed methodology e�ciently handles circuits with
discrete variables is another contribution of this paper.

In the following we will refer to our method for Yield optimization as the SVM-DFO method.

2 Problem formulation

As we said in the introduction, the aim of this work is to determine the design variables xd in
such a way that in the production process the Yield is maximized. The Yield corresponding
to a design xd, under given operating conditions x̄o is formally defined as:

Y (xd) =

Z +1

�1
. . .

Z +1

�1
�(xp) · pdf(xp) · dxp = E{�(xp)} (3)
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where

�(xp) =

(
1, xp 2 Ap

0, otherwise
,

with
Ap = {xp | li  f(xd, x̄o, xp)  ui, i = 1, . . . ,m; },

and pdf(xp) denotes the probability density function of the process variables xp. The op-
erating variables are fixed to their worst case values found by using a worst case operating
parameters optimization [9]. It is assumed that if the performance specifications are satisfied
at the worst cases, they are satisfied for any other feasible values of the operating variables.

As it is not possible to calculate analytically the integral in (3) we measure the Yield by
means of the expectation value:

Ŷ (xd) = Ê{�(xp)} =
1

ns

nsX

µ=1

�(x(µ)
p

) =
nok

ns

, (4)

where x(µ)
p , µ = 1, . . . , ns are normally distributed samples of xp and ns is the number of

samples in the Montecarlo analysis. Therefore, the estimator is given by the number nok of
the samples which satisfy the specifications divided by the total number of samples ns. It is
possible to use Ŷ given by (4) as objective function in the optimization problem, but such
objective function does not capture the geometry of the problem and it treats in the same
way any point out of Ap no matter how far it is from the feasible region. Therefore, rather
than maximizing Ŷ in (4) we minimize the following function:

�(xd) =
nsX

µ=1

lX

j=1

mX

i=1

n
log

�
max{0, li � fi(xd, x̄o,j, x̄

(µ)
p

)}+ ✏
�

+ log
�
max{0, fi(xd, x̄o,j, x̄

(µ)
p

)� ui}+ ✏
�o

,

(5)

where ✏ is a positive parameter close to zero and l is the number of operative cases. Function
(5) penalizes how much the performances of a point of the MC analysis are outside their
bounds. In the case a performance satisfies its specification no penalty is applied at all.
Furthermore the logarithm is used to smooth the max function. This is a strategy generally
used to handle zero norm problems like in [17]. Therefore the problem we will to solve is
given by:

min
xd

�(xd)

s.t. xd 2 Xd

xi

d
2 Z, i 2 Iz,

(6)

where Xd = {xd 2 Rn : li
xd

 xi

d
 ui

xd
, i = 1, . . . , n} is the feasible set of the design

variables, and Iz indicates the set of indexes of the design variables that can only assume
integer values.

We point out that formulation (6) is the standard formulation for bound constrained mixed-
integer optimization problems. Since the derivatives of function � are not available, we need
to resort to a derivative free mixed integer optimization algorithm.

5



3 The SVM surrogate model based optimization pro-

cedure

In this section we explain the procedure to generate the MC analysis used to evaluate the ob-
jective function � in (5) and we introduce the Derivative Free Optimization (DFO) algorithm
used to minimize it.
As said in the introduction the MC analysis of the circuit is performed using a surrogate
model given by Support Vector Machines. The methods for the screening of the process
parameters and the generation of the SVM are explained in detail in [6]. Every time the
DFO algorithm needs to evaluate the objective function � in a design point xd for fixed
values of the operating variables x̄o, the following procedure is executed, as shown in Figure
1:

Figure 1: Yield optimization procedure.

1. The values of the design parameters x̄d are given in input to the MC generation sub-
routine together with the desired number nt of samples used for training the SVM;

2. The subroutine generates an uniformly distributed LHS design of experiment for nt

values of the process variables with a standard deviation equal to � = 5. We remind
the readers that the LHS is created only in respect to the process variables;
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3. The nt realizations of the process variables are given to the simulator that runs nt

simulations for the circuit performances, creating the training set for the SVM;

4. The nt samples are used for training the SVM as surrogate model for the performances
of the circuit, given the values of the process variables. For the validation of the model
we apply a k � fold cross validation with k = 5;

5. The SVM trained model is used instead of the simulator to evaluate a Montecarlo
analysis of ns = 10000 samples of the process variables;

6. The 10000 values of the circuit performances are used to calculate the value of (5) in
x̄d.

As concerns the DFO algorithm for bound constrained mixed-integer minimization of �(xd),
we adopt the algorithm described and analyzed in [11]. This algorithm can be thought
as a distributed algorithm in the sense that all coordinates are considered cyclically and
a di↵erent search procedure is adopted depending on of variable type, according to if it is
continuous or discrete. Here we just give a sketch of the algorithm, while we refer to [11] for all
technical details. In this sketch �(x) is a function of a variable x 2 <n with components both
continuous and discrete, and X is the hyper-interval such that {li  xi  ui, i = 1, . . . , n}.

Algorithm: a mixed integer derivative-free optimization framework

Input: an initial point x0 2 X.
Output: a stationary point of �(x) (as defined in reference [11])

repeat

for i = 1, 2, . . . , n do

if i-th variable is continuous then do a continuous search along i-th direction
else do a discrete search along i-th direction
end if

end for

Try to (heuristically) improve the current point
until convergence

The above sketch helps us to understand the main iteration loop of the algorithm which
basically analyzes one coordinate at a time and performs a di↵erent procedure depending on
the type of variable under examination. Two basic ingredients of the method are apparent:
the two search procedures for, respectively, continuous and discrete variables.

It is well known in optimization computations that the most time consuming tasks are
the line searches, because in such subroutines many evaluations of the objective function
are carried out. Therefore it is of main concern to reduce the number of time consuming
simulations required to perform a reliable Monte Carlo analysis of the circuit performances
subject to the process variations. The use of the SVM as surrogate model of the circuit is
precisely intended to overcome this main di�culty.
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Figure 2: Scheme of the DC-DC converter.

4 Experimental results

In this section we analyze the numerical results obtained for two circuits developed by ST-
Microelectronics, a DC-DC converter and a chain of 15 bu↵ers. The numerical tests are
performed at ST-Microelectronics headquarter in Catania on a computational grid with
more than 800 processors. This brings a further challenge in evaluating the quality of the
results. Indeed the processors used for the simulations are chosen according to the load on
the grid and the di↵erent processors cannot be expected to have the same performances.
Consequently the computing time required by the algorithms is not a suitable measure for
the speed of the method. Rather we will use the total number of simulations needed in a
run, as the simulations are considered the main computational load of the procedure.

In order to ascertain the accuracy of the method we have performed several tests lowering
the number of nt samples in the training set of the SVM. First we have performed tests
with nt = 50 training samples, which we considered, by looking at the number of process
parameters in both circuits (9 in the DC-DC converter and 13 in the chain of bu↵ers), a
suitable number of samples in order to have an accurate SVM surrogate model. Then we
have performed tests with 40, 30, 20, 15 and 10 samples.

We report the optimal design parameters for the di↵erent runs using the DFO algorithm.
Then we evaluate the Yield corresponding to these optimal design parameters using a MC
analysis with 10000 samples obtained by using the simulator. Finally we compare the Yield
obtained by the SVM-DFO method and the optimal Yield obtained by the circuit designers
at ST-Microrelectronicsat using WiCkeD. In the optimization procedures the initial point,
provided by the circuit designers, is the same for SVM-DFO and WiCkeD.
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4.1 DC-DC Converter

The DC-DC converter of concern increases the voltage level from a partially lowered battery
to the voltage level needed for the di↵erent circuits composing AMOLED displays in portable
consumer electronics devices. This circuit integrates two main components: a step up and
an inverting DC-DC converter.

We are interested in the optimal design of a specific section of the converter, an integrated
circuit given by:

• a chain of 4 CMOS inverter;

• the High Side (PMOS) and the Low Side (NMOS) output stages;

• the driving signals (N UP, LX1).

In the circuit, the average value of voltage (and current) fed to the load is controlled by
turning the switch between supply and load on and o↵ at a fast rate. The switch operation
takes time which has to be kept as low as possible, avoiding both powers on at the same
time (i.e. we need to keep low the signal delay). Therefore, the longer this delay is, the
more the power loses increase. We report the scheme of the circuit in Figure 2. In this case
the chain of 4 CMOS inverters is used as a bu↵er that drives a large fan-out (the power
stage composed by the low side NMos and the high side PMos). The increase in the load
capacitance proportionally increases the propagation delay. Bu↵ering with multiple inverter
is used to maintain the speed performance of the circuit. The sizes of the components of
this device must assume values that are scaled with the sizes of the other components. In
order to avoid problems during the layout preparation (strange dimensions of devices) we
have chosen to fix the design variables to integer values that refer all to the width of one
device (W M3, width of PMos M3).

As concerns the variables, we have

• 8 Design Variables:

– K1, K2 , K3, K4: the scale factor between PMOS and NMOS (discrete);

– Mult2, Mult3, Mult4: the scale factor along the inverter chain (discrete);

– W M3: the width of the last PMOS inverter in the chain (continuous).

The first seven design variables (i.e. K1, K2 , K3, K4, Mult2, Mult3, Mult4) can
assume only the integer values xi

d
2 {1, 2, . . . , 10}, i = 1, . . . , 7. The last variable,

W M3, must satisfy the bound constraint 10�3  W M3  1.6 · 10�3.

We remark that the width of a specific component in the chain can be easily obtained
by the width of the last PMOS (e.g. W M4=W M3/K4, W M6=W M3/Mult4, . . . ).
The design variables are reported in Figure 3.

• 2 Operating Variables:

– V, T: supply voltage and temperature.
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Figure 3: Circuit variables.

• 9 Process Variables: The process variables involved in our example are related to
the Nmos and Pmos devices; they are 44 but after a sensitivity analysis 35 of them
were screened out. The nine remaining variables have a Gaussian distribution centered
around the mean value 0 and a standard deviation equal to 1.

As concerns the performance features, they are given by the delays of the circuit (See Figures
2 and 4):

• 3 Performance Features:

– Delay1: it represents the propagation delay between the signals V(N UP) and
V(LX1) when V(N UP) is rising above the VTH1 threshold and V(LX1) is falling
below the VTH2 threshold. For this performance the lower and upper bounds
l1, u1 are respectively l1= 0ns, , u1= 21ns;

– Delay2: it represents the propagation delay between the signals V(N UP) and
V(LX1) when V(N UP) is falling below the VTH1 threshold and V(LX1) is rising
above the VTH2 threshold. Lower and upper bounds are the same of Delay1;

– DelayS: The Delay Symmetry defined as Delay1 � Delay2. This performance
represents the overall e�ciency of the circuit, and it is the performance the de-
signers are the most interested in. Lower and upper bounds l3, u3 are respectively
l3= -3.15ns, u3= 3.15ns.
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Figure 4: Performance features.

The values of the operating variables are fixed at 4 worst cases values:

• Worst case for Delay1 and Delay2 at the lower bound of the performances: V=2.3 V,
T=120 �C;

• Worst case for Delay1 and Delay2 at the upper bound of the performances: V=4.8 V,
T=120 �C;

• Worst case for DelayS at the lower bound of the performance: V=2.3 V, T=-40 �C;

• Worst case for DelayS at the upper bound of the performance: V=4.8 V, T=-40 �C.

In Table 1 and 2 we report:

• the number of samples used for training the SVM as surrogate model of the circuit;

• the number of the iterations of the DFO algorithm to reach the optimal solution;

• the number of simulations required in the optimization procedure;

• the Yield obtained by the model with a MC analysis over 10000 samples of process
parameters;

• the real Yield obtained using the same 10000 samples;

• the optimal design point x⇤
d
used in evaluating the estimated and the real Yields.
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In Table 2 we also report the optimal design point found by WiCkeD. From these results we
notice that the DFO algorithm is able to handle the integer variables and to find a mixed
integer solution in a reasonable number of iterations. Moreover we remark that the algorithm
reaches the same optimal solution no matter the number of samples in the training set. This
is an interesting behavior, that indicates that not only the algorithm is able to find a design
point with a satisfactory Yield, but also that it is not a↵ected by the decreasing accuracy of
the surrogate model. In this particular case we notice that the the estimated Yield of the
model is slightly lower that the actual Yield, indicating that the prediction of the SVM is
conservative.

In Table 3 we report the results of the SVM surrogate model based method compared to those
obtained using WiCkeD. In particular, we report the Yield resulting for each performance
and the total Yield. It can be seen that no method is superior to the other. WiCkeD
performs better for Delay1 Upper and slightly better for Delay2 Upper, while the SVM
surrogate model based method fares better for Delay2 Lower and for DelayS Upper. The
di↵erence in performance between the two methods in the Delay1 Upper case makes the
total Yield of WiCkeD superior. On the other side, the most important performance is the
DelayS making the solution obtained by the DFO better from a design point of view because
it reaches the 100% of Yield. For what concern the e�ciency of DFO, it reaches the optimal
solution in much less simulations than WiCkeD, therefore obtaining a superior design point
with much less computational e↵ort.

4.2 Chain of Bu↵ers

The second circuit considered for testing the Yield optimization method is a chain of 15
bu↵ers that are used to generate a programmable delay of the input signal. A signal can be
delayed by a programmable quantity by switching on or o↵ each bu↵er in the chain. The
bu↵ers are composed by two inverters and consists of four MOS, two NMOS and two PMOS
devices, as showed in Figure 5.

The design parameters are the widths W and lengths L of the four MOS devices constituting
a bu↵er in the chain and the goal of the optimization process is to minimize the low-to-high
and high-to-low propagation delays and the power dissipated by the circuit when all the 15
bu↵ers of the chain are on. Once the optimal bu↵er size has been found, all bu↵ers in the

nt Iter. Sim. Model Yield Real Yield
10 86 4300 0.8531 0.875
15 86 6450 0.8259 0.875
20 86 8600 0.8240 0.875
30 86 12900 0.8305 0.875
40 86 17200 0.8382 0.875
50 86 21500 0.8314 0.875

Table 1: Results for the DC-DC circuit with di↵erent sizes of the SVM training set.
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Figure 5: A cell in the Chain of Bu↵ers.

chain will have this optimal size. One additional specification is to minimize the di↵erence
between high-to-low and low-to-high propagation delays. For this reason we have defined
one additional performance which is the di↵erence between the aforementioned propagation
delays. The main objective of the optimization process is to make the behavior of the two
delays as similar as possible.

The variables of the circuit are:

• 5 Design Variables (continuos):

– W MN1: Width of transistor MN1, with 10µm  W MN1  300µm;

– W MN2: Width of transistor MN2,with 10µm  W MN2  300µm;

– W MP1: Width of transistor MP1, with 10µm  W MP1  300µm;

– W MP2: Width of transistor MP2, with 10µm  W MP2  300µm;

– L: Length of transistors, with 0.28µm  L  0.40µm.

• 2 Operating Variables:
The Voltage V and the temperature T.

x⇤
d

SVM-DFO , nt = 10� 50 (1, 3, 2, 2, 9, 3, 6, 1.6 ⇤ 10�3)
WiCkeD (1, 3, 1, 2, 6, 3, 7, 1.6 ⇤ 10�3)

Table 2: The optimal design parameters for the DC-DC circuit.
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Performance Temp. Voltage Y. WiCkeD Y. SVM-DFO
Delay 1 Lower 120 2.3 100% 100%
Delay 1 Upper 120 4.8 92.54% 88.26%
Delay 2 Lower 120 2.3 100% 100%
Delay 2 Upper 120 4.8 95.80% 93.56%
Delay S Lower -40 2.3 99.26% 100.00%
Delay S Upper -40 4.8 96.54% 100.00%
Total Yield 90.12% 87.50%
Total Simulations 11000 [4300,21500]

Table 3: Comparisons of the results between SVM-DFO and WiCkeD.

• 13 Process Variables:
The initial number of process parameters is 236, and 223 have been screened for a total
of 13 variables a↵ecting this circuit.

We consider m = 4 performance features:

• tHL: High-to-low propagation delay, with 100ps  tHL  3ns;

• tLH : Low-to-high propagation delay, with 100ps  tLH  3ns;

• tD: tHL � tLH , with with 0s  tD  20ps;

• pw: the power dissipated by the circuit, with 4mW  pw  6mW .

From the preprocessing on the circuit, we can observe an interesting feature. The higher the
temperature is, the slower the two delays become. Therefore we only need to analyze the
circuit with the temperature at its upper bound, that is T = 150�C: if the delays are small
enough at such temperature, then they will also be small enough at lower temperatures. The
voltage is set at the value V=1.2 V.

nt Iter. Sim. Model Yield Real Yield
10 100 1000 0.947 0.772
15 108 1620 0.983 0.964
20 108 2160 0.983 0.963
30 102 3060 0.992 0.963
40 105 4200 0.981 0.960
50 112 5600 0.977 0.953

Table 4: Results for the chain of bu↵ers with di↵erent sizes of the SVM training set.

The results of the six runs of the method are presented in Table 4 and 5. In the last row
of Table 5 we also report the optimal design point found by WiCkeD. We notice that the
accuracy of the SVM surrogate models in predicting the real Yield is quite satisfactory, with
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the exception of the case with 10 samples in the training set. Such behavior is expected as
the number of samples in the training set is lower than the dimensionality of the predicted
function, that is 13. The remaining optimal design parameters all produce a Yield over the
95%.
We notice also that the optimal design parameters found are all close to each other, with
changes only at the third significant digit with the sole exception of x⇤2

d
in the run with 10

samples in the training. This shows a certain level of reliability in the proposed methodology.
Even with really few samples in the training set, and a limited computational e↵ort, it is
possible to find good enough design parameters. The small di↵erences in the results are due
to the di↵erent values that the objective function reaches because of the di↵erent trained
models, but such small di↵erences do not prevent to provide a high value of the Yield.

The comparison with the results obtained using WiCkeD is reported in Table 6 and is quite
encouraging. In the second column we report the results of WiCkeD for every performance
and the number of simulations, while in the third column we report the results of SVM -
DFO with the minimum and the maximum Yield for every performance and the minimum
and maximum number of simulations for the runs with 15, 20, 30, 40, 50 samples in the
training set.
It is possible to see that not only SVM - DFO uses from one tenth to an half of the simulations
needed by WiCkeD to find a suitable solution, but also that the Yield of the SVM - DFO is
quite superior to the one obtained by WiCkeD. In detail, only for the tD at the lower bound
the Yield of the SVM - DFO is lower by a significant percentage, while at the upper bound
it is possible to observe a substantial improvement of SVM - DFO with respect to WiCkeD
in all the considered runs. These results clearly show once again that SVM - DFO is able to
obtain a better design solution than WiCkeD with substantially less computational e↵ort.

5 Conclusions

In this paper we have presented a novel approach for Yield optimization in electronic circuit
design that combines an accurate surrogate model with an e�cient derivative-free optimiza-
tion algorithm which is able to solve mixed integer nonlinear problems. The surrogate models

x⇤1
d

x⇤2
d

x⇤3
d

x⇤4
d

x⇤5
d

SVM-DFO

nt =10 2.800E-05 4.069E-05 4.052E-05 3.906E-05 4.154E-07
nt =15 2.816E-05 4.112E-05 4.068E-05 3.904E-05 4.154E-07
nt =20 2.816E-05 4.112E-05 4.068E-05 3.904E-05 4.154E-07
nt =30 2.800E-05 4.106E-05 4.056E-05 3.910E-05 4.158E-07
nt =40 2.808E-05 4.118E-05 4.068E-05 3.906E-05 4.154E-07
nt =50 2.812E-05 4.118E-05 4.068E-05 3.906E-05 4.154E-07
WiCkeD 2.820E-05 4.174E-05 4.074E-05 3.918E-05 4.144E-07

Table 5: The optimal design parameters for the chain of bu↵ers.
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Performance Y. WiCkeD Y. SVM-DFO
tHL Lower 100% [100%,100%]
tHL Upper 99.2% [99.0%, 99.5%]
tLH Lower 100% [100%, 100%]
tLH Upper 98.8% [98.6%, 99.4%]
tD Lower 99.6% [98.1%, 99%]
tD Upper 93.7% [97.5% 98.8%]
Power Lower 100% [100%,100%]
Power Upper 99.9% [99.9, 100%]
Total Yield 92.1% [95.3%, 96.3%]
Simulations 10000 [1620,5600]

Table 6: Comparisons of the results between SVM-DFO and WiCkeD.

are imbedded in the optimization procedure so that the complexity they have to handle is
only related to the process variables, resulting in reliable models even when the number of
circuit simulation is reasonably limited.

The method has been experimented using two real consumer electronic circuits provided by
ST-Microelectronics. The optimal design variables found using the method show high values
of the Yield even for such di�cult test benches. The method also shows a good behavior when
really few samples are used to train the SVM, and compares very well with WiCkeD, the
software suite used by ST-Microelectronics for circuit design, finding good design choices with
less computational e↵ort for both the analyzed circuits. From our computational experience,
it seems that it possible to obtain accurate results by using as many training samples for
the surrogate model as the number of process parameters. We would suggest to double such
number to be conservative.

Taking into account the fact that WiCkeD is being developed as a commercial tool since
more than ten years, we can conclude that the method described in this paper in its first
stage of experimentation, looks quite promising, and worth of further development e↵ort.
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