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Abstract
Modeling the arrival process to an Emergency Department (ED) is the first step of 
all studies dealing with the patient flow within the ED. Many of them focus on the 
increasing phenomenon of ED overcrowding, which is afflicting hospitals all over 
the world. Since Discrete Event Simulation models are often adopted to assess solu-
tions for reducing the impact of this problem, proper nonstationary processes are 
taken into account to reproduce time–dependent arrivals. Accordingly, an accurate 
estimation of the unknown arrival rate is required to guarantee the  reliability of 
results. In this work, an integer nonlinear black–box optimization problem is solved 
to determine the best piecewise constant approximation of the time-varying arrival 
rate function, by finding the optimal partition of the 24 h into a suitable number of 
not equally spaced intervals. The black-box constraints of the optimization problem 
make the feasible solutions satisfy proper statistical hypotheses; these ensure the 
validity of the nonhomogeneous Poisson assumption about the arrival process, com-
monly adopted in the literature, and prevent mixing overdispersed data for model 
estimation. The cost function of the optimization problem includes a fit error term 
for the solution accuracy and a penalty term to select an adequate degree of regular-
ity of the optimal solution. To show the effectiveness of this methodology, real data 
from one of the largest Italian hospital EDs are used.
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1  Introduction

Statistical modeling  for describing and predicting patient arrival to Emergency 
Departments (EDs) represents a basic tool of each study concerning ED patient 
load and crowding. Indeed, all the approaches adopted to this aim require an 
accurate model of the patient arrival process. Of course, such a process plays a 
key role in tackling the widespread phenomenon of overcrowding which afflicts 
EDs all over the world (see e.g., Ahalt et al. (2018), Bernstein et al. (2003), Dal-
doul et al. (2018), Hoot and Aronsky (2008), Hoot et al. (2007), J Reeder et al. 
(2003), Vanbrabant et al. (2020), Wang et al. (2015), Weiss et al. (2004), Weiss 
et al. (2006)). The two factors that have the most significant effect on overcrowd-
ing are both external and internal. The first concerns the patient arrival process; 
the second regards the patient flow within the ED. Therefore, both aspects must 
be accurately considered for a reliable study on ED operation.

Several modeling  approaches for analyzing ED patient flow have been pro-
posed in literature (see Wiler et  al. (2011) for a survey). The main quantitative 
methods used are based on statistical analysis (time–series, regression) or gen-
eral analytic formulas (queuing theory). In particular, a realistic model for patient 
arrivals is crucial for dealing with important issues regarding the patient flow 
through an ED. To this aim, time–dependent queueing models have been success-
fully adopted; for instance, in Vile et al. (2017) staffing level problem has been 
efficiently dealt with   using  queuing theoretical approach in a time–dependent 
setting with a time–varying input. However, simulation modeling (both Discrete 
Event and Agent-Based Simulation) is currently one of the most widely used and 
flexible tool for studying the patient flow through an ED. It enables performing 
effective scenario analysis, aiming at determining bottlenecks (if any) and test-
ing different ED settings. We refer to Salmon et al. (2018) for a recent survey on 
simulation modeling for ED operation.

Simulation modeling can be also combined with other techniques to improve 
the responses provided; for instance, in the recent paper by Gartner and Padman 
(2020) a Discrete Event Simulation model has been linked with machine learning 
models for better estimating the patient perception of the services’ delay provided 
in emergency care.

In the time–dependent modelling approach, a methodology that appears to be a 
step forward is Simulation–Based Optimization. It combines a simulation model 
with a black-box optimization algorithm, aiming at determining an optimal ED 
setting, based on suited objective function (representing some KPIs) to be maxi-
mized or minimized (Ahmed and Alkhamis 2009; Guo et al. 2016, 2017).

Modeling methodologies are generally based on assumptions that, in some 
cases, may represent serious limitations when applied to complex real–world 
cases, such as ED operation. In particular, when dealing with ED patient arrival 
stochastic modeling, due to the nonstationarity of the process, a standard assump-
tion is the use of Nonhomogeneous Poisson Process (NHPP) (see e.g., Ahalt et al. 
(2018), Ahmed and Alkhamis (2009), Guo et al. (2017), Kim and Whitt (2014a), 
Kuo et al. (2016), Zeinali et al. (2015)). We recall that a counting process X(t) is 
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an NHPP if 1) arrivals occur one at a time (no batch); 2) the process has inde-
pendent increments; 3) increments have Poisson distribution, i.e. for each interval 
[t1, t2],

where m(t1, t2) = ∫ t2
t1
�(s)ds and �(t) is the arrival rate. Unlike the Poisson process 

(where �(t) = � ), NHPP has nonstationary increments and this makes the use of 
NHPP suitable for modeling ED arrival process, which is usually strongly time–var-
ying. Of course, appropriate statistical tests must be applied to available data to 
check if NHPP fits. This is usually performed by assuming that NHPP has a rate 
that  can be considered approximately piecewise constant. Hence, Kolmogo-
rov–Smirnov (KS) statistical test can be applied in separate and equally spaced 
intervals, and usually the classical Conditional–Uniform (CU) property of the Pois-
son process is exploited (see Brown et al. (2005), Kim and Whitt (2014a), Kim and 
Whitt (2014b)). Unlike the standard KS test, in the CU KS test, the data are trans-
formed before applying the test. More precisely, by CU property, the piecewise con-
stant NHPP is transformed into a sequence of i.i.d. random variables uniformly dis-
tributed on [0, 1] so that it can be considered a (homogeneous) Poisson process in 
each interval. In this manner, the data from all the intervals can be merged into a 
single sequence of i.i.d. random variables uniformly distributed on [0, 1]. This pro-
cedure, proposed in Brown et  al. (2005), enables removing nuisance parameters 
obtaining independence from the rate of the Poisson process on each interval. Hence 
data from separate intervals (with different rates on each of them) and also from dif-
ferent days can be combined, avoiding common drawback due to large intra-day and 
inter-day variation of the ED patient arrival rate. Brown et al. (2005) apply the CU 
KS test after performing a further logarithmic data transformation. In Kim and 
Whitt (2014b), Kim and Whitt (2015), this approach has been extensively tested 
along with alternative data transformations proposed in early papers Durbin (1961) 
and Lewis (1965). However, in Kim and Whitt (2014a) the authors  have observed 
that this procedure applied to ED patient arrival data is fair only if they are “ana-
lyzed carefully”. This is because the following three issues must be seriously consid-
ered: 1) data rounding, 2) choice of the intervals, 3) overdispersion. The first issue 
may produce batch arrivals (zero-length interarrival times) that are not included in 
an NHPP, so that unrounded data (or an unrounding procedure) must be considered. 
The second is a major issue in dealing with ED patient arrivals since the arrival rate 
can rapidly change so that the piecewise constant approximation is reasonable only 
if the intervals are properly chosen. The third issue regards combining data from 
multiple days. Indeed, in studying the ED patient arrival process, it is common to 
combine data from the same time slot from different weekdays, being this impera-
tive when data from a single day are not sufficient for statistical testing. Data col-
lected from the EDs database usually show large variability over successive weeks 
mainly due to seasonal phenomena like flu season, holiday season, etc. However, 
this overdispersion phenomenon must be checked by using a dispersion test on the 
available data (e.g., Kathirgamatamby (1953)).

P
(
X(t1) − X(t2) = n

)
= e−m(t1,t2)

[m(t1, t2)]
n

n!
,
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In this work, we propose a new modeling approach for the ED patient arrival pro-
cess based on a piecewise constant approximation of the arrival rate accomplished 
with not equally spaced intervals. This choice is suggested by the typical situation 
that occurs in EDs where the arrival rate is small and varying during the night hours, 
and it is higher and more stable in the daytime, this is indeed what happens in the 
chosen case study. It is worth noting that ED management typically plans resource 
allocation based on  the average number of arrivals expected in a given time–slot 
(corresponding to an interval of the partition of the 24 h), for instance in staffing 
allocation. Therefore, it is important to have fewer  intervals to represent the real 
arrival process, still ensuring good accuracy. In this respect, to obtain an accurate 
representation of the arrival rate �(t) by a piecewise constant function �D(t) , a finer 
discretization of the time–domain is required during the night hours, as opposed to 
daytime. For this reason, the proposed method finds the best partition of the 24 h 
into intervals not necessarily equally spaced.

As far as the authors are aware, the use of an optimization method for identify-
ing stochastic processes characterizing the patient flow through an ED was already 
proposed in Guo et al. (2016), but that study aimed at determining the optimal ser-
vice time distribution parameters (by using a metaheuristic approach) and it did not 
involve ED arrival process. Therefore our approach represents the first attempt to 
adopt an optimization method for determining the best stochastic model for the ED 
arrival process. In the previous work De Santis et al. (2020) a preliminary study was 
performed following the same approach. Here, concerning De Santis et al. (2020), 
we propose a significantly enhanced statistical model which allows us to obtain bet-
ter results on the case study we consider.

In constructing a statistical model of the ED patient arrivals, a natural way to 
define a selection criterion is to evaluate the fit error between �(t) and its approxima-
tion �D(t) . However, the true arrival rate is unknown. In the approach we propose, as 
opposed to Kim and Whitt (2014a), no analytical model is assumed for �(t) , but it is 
substituted by an “empirical arrival rate model” �F(t) obtained by a sample approxi-
mation corresponding to the very fine uniform partition of the 24 h into intervals 
of 15 minutes. In each of these intervals, the average arrival rate values have been 
estimated from data obtained by collecting samples over the same day of the week, 
for all the weeks in some months, using experimental data for the ED patient arrival 
times. Hence, any other �D(t) corresponding to a grosser partition of the day must 
be compared to �F(t) . In other words, an optimization problem is solved to select 
the best day partition in not equally spaced intervals, determining a piecewise con-
stant approximation of the arrival rate over the 24 h with the best fit to the empirical 
model. Therefore, the objective function (to be minimized) of the optimization prob-
lem we formulate, comprises the fit error, namely the mean squared error. Moreover, 
an additional penalty term is included aiming at obtaining the overall regularity of 
the optimal approximation, being the latter measured using the sum of the squares of 
the jumps between the values in adjacent intervals. The rationale behind this term is 
to avoid optimal solutions with too rough behavior, namely few long intervals with 
high jumps.
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To make the result reliable, several constraints must be considered. First, the 
length of each interval of the partition can not be less than a fixed value (half an 
hour, 1 h). Moreover, for each interval,

–	 the CU KS test must be satisfied to support the NHPP hypothesis;
–	 the dispersion test must be satisfied to ensure that data are not overdispersed, 

and could be considered as a realization of the same process (no week sea-
sonal effects).

The resulting problem is a black-box constrained optimization problem and to 
solve it we use a method belonging to the class of Derivative-Free Optimization. 
In particular, we use the new algorithmic framework recently proposed in Liuzzi 
et al. (2020) which handles black-box problems with integer variables.

We performed extensive experimentation on data collected from the ED of a 
big hospital in Rome (Italy), also including some significant sensitivity analyses. 
The results obtained show that this approach enables determining the number of 
intervals and their length such that an accurate approximation of the empirical 
arrival rate is achieved, ensuring the consistency between the NHPP hypothesis 
and the arrivals data. The regularity of optimal piecewise constant approximation 
can be also finely tuned by properly weighing the penalty term in the objective 
function concerning the fit error term.

It is worth noting that the use of  a piecewise constant function for approxi-
mating the arrival rate function is usually required by the most common discrete 
event simulation software packages when implementing the  ED patient arrivals 
process as an NHPP.

To summarize, we propose a model for the patient arrival process at an ED under 
NHPP hypotheses, aiming at defining the best piecewise constant approximation of 
arrival rate with not equally spaced intervals. This is obtained by solving an integer 
nonlinear black–box optimization problem where the number of intervals is not a 
priori fixed and the constraints ensure that the solution complies with the NHPP 
hypothesis.

The paper is organized as follows. In Sect. 2 we describe the statistical model we 
propose along with the optimization problem we consider. Sect.  3, briefly reports 
information on the hospital ED under study. The results of extensive experimenta-
tion are included in Sect. 4, while Sect. 5 reports a preliminary assessment of the 
approach we propose. Finally, Sect. 6 includes some concluding remarks.

2 � Analytical model

The arrival process at EDs is usually characterized by a strong intra-day variation 
both in the arrival rate and interarrival times: typically, experimental data show 
rapid changes in the number of arrivals during the night hours, as opposed to a 
smoother profile at daytime. As we already mentioned in the Introduction, for this 
reason, the ED arrival process is usually modeled as an NHPP.
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2.1 � Statistical model

We describe the statistical model of the ED patient arrivals we propose. As opposed 
to Kim and Whitt (2014a), we do not assume any analytical model for the arrival 
rate �(t) , and therefore a suitable representation of the unknown function is needed. 
A realistic representation can be obtained by averaging the number of arrivals 
observed in experimental data on suitable intervals over the 24 h of the day, not nec-
essarily equally spaced.

Let {Ti} denote a partition P of the observation period T = [0, 24] (h) in N inter-
vals, and let {�i} be the corresponding sample average rates. Then a piecewise con-
stant approximation of �(t) can be written

where �Ti(t) is 1 for t ∈ Ti and 0 otherwise (the indicator function of set Ti ). Any 
partition P gives rise to a different approximation �D(t) , depending on the number of 
intervals and their lengths. Therefore a criterion is needed to select the best partition 
P⋆ with some desirable features.

First of all, we need to ensure that there is no overdispersion in the arrivals data. 
We refer to the commonly used dispersion test proposed in Kathirgamatamby (1953) 
and reported in Kim and Whitt (2014a). If it is satisfied, then it is possible to com-
bine arrivals for the same day of the week over different weeks. To this aim, for any 
partition P, let {kr

i
} denote the number of arrivals in the i-th partition interval Ti in 

the r-th week, r = 1,… ,m . Consider the statistics

where �i =
1

m

∑m

r=1
kr
i
 is the average number of arrivals in the given interval for the 

same day of the week over the considered m weeks. Under the null hypothesis that 
the counts {kr

i
} are a sample of m independent Poisson random variables with the 

same mean count �i (no overdispersion), then Dsi is distributed as �2
m−1

 , the chi-
squared distribution with m − 1 degrees of freedom. Therefore the null hypothesis is 
not rejected with 1 − � confidence level if

where �2
m−1,�

 is, of course, the � level critical value of the �2
m−1

 distribution.
Furthermore, the partition is feasible if data are consistent with NHPP. Namely, if 

we denote by ki the number of arrivals in each interval Ti = [ai, bi) obtained by consid-
ering data of the same weekday, in the same interval, over m weeks, i.e. ki =

∑m

r=1
kr
i
 , 

i = 1,… ,N , the partition is feasible if each ki has a Poisson distribution with a rate �i 
obtained as �i∕(bi − ai) . To check the validity of the Poisson hypothesis, the CU KS 
test can be performed (see Brown et al. (2005), Kim and Whitt (2014a)). We prefer to 
use CU KS rather than the Lewis KS test since this latter is highly sensitive to rounding 

(1)�D(t) =

N∑

i=1

�i �Ti(t), t ∈ T ,

Dsi =
1

�i

m∑

r=1

(
kr
i
− �i

)2
, i = 1,… ,N,

(2)Dsi ≤ �2
m−1,�

, i = 1,… ,N,
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of the numerical values and the CU KS test has more power against alternative hypoth-
eses involving exponential interarrival times (see Kim and Whitt (2014b) for a detailed 
comparison between the effectiveness of the two tests).

To perform CU KS test, for any interval Ti = [ai, bi) , let tij , j = 1,… , ki, be the 
arrival times within the i-th interval obtained as the union over the m weeks of the 
arrival times in each Ti . Now consider the rescaled arrival times defined by 
�ij =

tij − ai

bi − ai
 . The rescaled arrival times, conditionally to the value ki , are a collection of 

i.i.d. random variables uniformly distributed over [0,  1]. Hence, in any interval, we 
compare the theoretical cumulative distribution function (cdf) F(t) = t with the empiri-
cal cdf

The test statistics is defined as follows

The critical value for this test is denoted as T(ki, �) and its values can be found on 
the KS test critical values table. Accordingly, the Poisson hypothesis is not rejected 
if

This test has to be satisfied on each interval Ti to qualify the partition P given by {Ti} 
as feasible, in the sense that the CU KS test is satisfied, too.

A further restriction is imposed on the feasible partitions. Given the experimental 
data, realistic partitions can not have a granularity too fine to avoid that some ki being 
too small may unduly determine the rejection of the CU KS test. To this aim, a suited 
lower threshold value for the interval length must be chosen, taking into account the 
specific case study considered.

Now let us evaluate the feasible partitions also in terms of the characteristics of 
the function �D(t) . It would be amenable to define a fit error for �(t) , which unfortu-
nately is unknown. The problem can be resolved by considering a piecewise constant 
approximation �F(t) over a very fine partition PF of T. A set of 96 equally spaced inter-
vals of 15 minutes was considered and the corresponding average rates �F

i
 were esti-

mated from data.
The function �F(t) can be considered as an empirical arrival rate model. Note that 

partition PF need not be feasible since it only serves to define the finest piecewise con-
stant approximation of �(t) . Therefore the following fit error can be defined

Fi(t) =
1

ki

ki∑

j=1

�{�ij≤t}
, 0 ≤ t ≤ 1.

(3)Di = sup
0≤t≤1

(|Fi(t) − t|).

(4)Di ≤ T(ki, �), i = 1,… ,N.

(5)E(P) =

N∑

i=1

Nj∑

j=1

(�j − �F
ij
)2,
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where Nj is the number of intervals of 15 minutes contained in Tj , and identified by 
the set of indexes {ij} ⊂ {1,… , 96}.

Finally, it is also advisable to characterize the “smoothness” of any approxima-
tion �D(t) to avoid very gross partitions with high jumps between adjacent inter-
vals  using the mean squared error

In the following Sect.  2.2 the model features illustrated above are organized in a 
proper optimization procedure that provides the selection of the best partition 
according to conflicting goals.

The approach we propose enables us to well address the major two issues raised 
in Kim and Whitt (2014a) (and reported in the Introduction) when dealing with 
modelling ED patient arrivals, namely the choice of the intervals and the overdisper-
sion. Concerning the third issue, the data rounding, the arrival times in the data we 
collected are rounded to seconds (format hh:mm:ss), and occurrences of simulta-
neous arrivals which would cause zero interarrival times are not present. Therefore, 
we do not need any unrounding procedure. Anyhow, as already pointed out above, 
the CU KS test we use is not very sensitive to data rounding.

2.2 � Statement of the optimization problem

Any partition P = {Ti} of T = [0, 24] is characterized by the boundary points {xi} of 
its intervals and by their number N. Let us introduce a vector of variables x ∈ ℤ

25 
such that

i = 1,… , 24 , with x1 = 0 and x25 = 24.
Functions in (5) and (6) are indeed functions of x, and therefore will be denoted 

by E(x) and S(x), respectively. Therefore, the objective function that constitutes the 
selection criterion is given by

where w > 0 is a parameter that controls the weight of the smoothness penalty term 
compared  to the fit error: the larger w, the smaller the difference between average 
arrival rates in adjacent intervals; this, in turn, implies that on a steep section of 
�F(t) an increased number of shorter intervals is adopted to fill the gap with rela-
tively small jumps.

The set P of feasible partitions is defined as follows:

(6)S(P) =

N∑

j=2

(�j − �j−1)
2.

Ti = [xi, xi+1),

(7)f (x) = E(x) + wS(x),
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where

i = 1,… ,N . The value � in (9) denotes the minimum interval length allowed and 
we assume � ≥ 1∕4 . Of course, constraints gi(x) ≤ 0 represent the satisfaction of 
the CU  KS test in (4), while constraints hi(x) ≤ 0 concern the dispersion test in 
(2). Therefore, the best piecewise constant approximation 𝜆⋆

D
(t) of the time-varying 

arrival rate �(t) is obtained by solving the following black-box optimization problem:

We highlight that the idea of using as constraints of the optimization problem a test 
to validate the underlying statistical hypothesis on data along with a dispersion test 
is completely novel in the framework of modeling the ED patient arrivals process. 
The only proposal which uses a similar approach is in our previous paper (De Santis 
et al. 2020).

It is important to note that in (7) the objective function has no analytical struc-
ture in terms of  the independent variables and it can only be computed by a data-
driven procedure once the xi ’s values are given. The same is true for the constraints 
gi(x) and hi(x) in (8). Therefore the problem at  hand is an integer nonlinear con-
strained black-box problem, and both the objective function and the constraints are 
relatively expensive to compute and this makes it difficult to efficiently solve. Con-
sequently, classical optimization methods either can not be applied (since based on 
the analytic knowledge of the functions involved) or they are not efficient especially 
when evaluating the functions at a given point is very computationally expensive. 
Therefore to tackle the problem (12) we turned our attention to the class of Deriv-
ative-Free Optimization and black-box methods (see, e.g., Audet and Hare (2017), 
Conn et  al. (2009), Larson et  al. (2019)). Specifically, we adopt the algorithmic 
framework recently proposed in Liuzzi et al. (2020). It represents a novel strategy 
for solving black-box problems with integer variables and it is based on the use of 
suited search directions and a non-monotone line  search procedure. Moreover, it 

(8)
P =

{
x ∈ ℤ

25 | x1 = 0, x25 = 24, xi+1 − xi ≥ �i, gi(x) ≤ 0,

hi(x) ≤ 0, i = 1,… ,N
}

(9)�i =

{
0 if xi = xi+1,

� otherwise,

(10)gi(x) =

{
0 if xi = xi+1,

Di − T(ki, �) otherwise,

(11)hi(x) =

{
0 if xi = xi+1,

Dsi − �2
m−1,�

otherwise,

(12)
max f (x)

s.t. x ∈ P.
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can handle generally-constrained problems by using a penalty approach. We refer to 
Liuzzi et al. (2020) for a detailed description and we only highlight that the results 
reported in Liuzzi et al. (2020) clearly show that this algorithm framework is par-
ticularly efficient in tackling black-box problems like the one in (12). In particular, 
the effectiveness of the adopted exploration strategy concerning the state-of-the-art 
methods for black-box is shown. This is because  the approach proposed in Liuzzi 
et al. (2020) combines computational efficiency with a high level of reliability.

3 � The case study under consideration

The case study we consider concerns the ED of Policlinico Umberto I, a very large 
hospital in Rome, Italy. It is the biggest ED in the Lazio region in terms of yearly 
patients arrivals (about 140,000 on average). Thanks to the cooperation of the ED 
staff, we were able to collect data concerning patient arrivals for the whole year 
2018. In particular, for this work, we focus on the patients′ arrival data collected in 
the first 13 weeks of the year, i.e. on data collected from the 1st of January to the 
31st of March. Both walk-in patients and patients transported by emergency medical 
service vehicles are considered. The total number of arrivals, for each weekday, over 
the 13 weeks is reported in Table 1.

In Fig.  1 the plot of the average rates �F
i
 estimated from data over 96 equally 

spaced intervals of 15 minutes is reported.
From this figure, it can be easily observed that, as expected, the arrival rate dras-

tically changes from night hours to day hours, with significant growth during the 
morning hours.

Table 1   The total number of 
arrivals, for each  weekday, over 
the 13 considered weeks

Mon. Tues. Wed. Thur. Fri. Sat. Sun.

2140 2114 2078 2040 2139 1995 1745

Fig. 1   Plot of the daily average arrival rate �F
i
 , i = 1,… , 96 , over the 13 considered weeks
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In Fig. 2, the weekly hourly average arrival rate obtained by averaging the num-
ber of arrivals occurring in the same hourly time slot over the 13 considered weeks 
is reported.

It is worth highlighting that, following  the literature (see, i.e., Kim and Whitt 
(2014a)), the average arrival rates among the days of the week are significantly dif-
ferent. Therefore, since averaging over these days would lead to inaccurate results, 
the different days of the week must be considered separately. Specifically, we can 
choose any day of the week to apply the methodology under study and the same way 
would apply to other days, thus obtaining a different partition for each day. As an 
example, we choose Tuesday.

Fig. 2   Plot of the weekly average arrival rate for the 13 considered weeks

Fig. 3   Plot of the average hourly arrival rate for the Tuesdays over the 13 considered weeks of the year
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In Fig. 3, the plot of the hourly average arrival rate for the Tuesdays over the 
13 considered weeks is reported, while Fig. 4 shows the mean and variance of 
the interarrival times that occurred on the first Tuesday of the year 2018. 

From this latter figure, we observe that these two statistics have similar val-
ues within each 3-h time slot and this complies with the property of the Poisson 
probability distribution for which mean and variance coincide.

We finally remark that seasonal phenomena might affect the number of weeks 
to be considered for model estimation due to large variability over successive 
weeks. Indeed, the  overdispersion phenomenon may require a model calibra-
tion for each particular period of the year to take into account typical situa-
tions which occur, for instance, during flu season. This important aspect clearly 
emerges also from our experimentation reported in the next section.

4 � Experimental results

In this section, we report the results of extensive experimentation on data concern-
ing the case study described in Sect. 3, namely the ED patient arrivals collected in 
the first m weeks of the year 2018. Different values of the number m of weeks have 
been considered. Standard significance level � = 0.05 is used in the CU KS and dis-
persion tests.

In the optimization problem at hand the value of � in (9) is set to 1 hour. More-
over, it is important to note that different values of the weight w in the objective 
function (7) lead to various piecewise constant approximations with different fitting 
accuracy and degree of regularity. Therefore, we performed a careful tuning of this 
parameter, aiming at determining a value that represents a good trade-off between a 
small fit error and the smoothness of the approximation.

Fig. 4   Plot of the average (in solid green) and variance (in dashed red) of the interarrival times for the 
first Tuesday of year 2018. On the abscissa axis, 3-h time slots are considered
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In our experimentation, we used the default parameter values of the optimization 
algorithm adopted in Liuzzi et  al. (2020). The stopping criterion is based on the 
maximum number of function evaluations set to 5000. As starting point x0 of the 
optimization algorithm we adopt the following

which corresponds to the case of 24 intervals of unitary length. This choice is a 
commonly used partition in most of the approaches proposed in the literature (see 
e.g., Ahalt et al. (2018), Kim and Whitt (2014a)).

We used R language and all the runs were performed on a PC with an Intel Core 
i7-2600 quad-core 3.4 GHz Processor and 16 GB RAM.

Table  3 in the “Appendix” reports the results of CU KS and dispersion tests 
applied to the partition corresponding to the starting point x0 , considering m = 13 
weeks. In particular, in Table 3 for each one-hour slot the sample size ki is reported 
along with the p-value and the rejection/not rejection of the null hypothesis of the 
corresponding test. We observe that the arrivals are not overdispersed in any interval 
of the partition corresponding to x0 , i.e. all the constraints hi(x) ≤ 0 are satisfied and 
this allows us to combine data for the same day of the week over successive weeks. 
However, this partition is even infeasible, i.e., gi(x) > 0 , for some i; this corresponds 
to reject the statistical hypothesis on some Ti . Notwithstanding, even if the starting 
point is infeasible, the optimization algorithm we use can find an optimal solution.

As we already mentioned, the choice of a proper value for the weight w in the 
objective function (7) is important and not straightforward. On the other hand, 
the number m of weeks considered  also affects both the accuracy of the approxi-
mation, through the average rates estimated on each interval, and the consistency 
of the results, which is ensured by constraints (10) and (11). However, while w is 
related to the statement of the optimization problem (12) and it can be arbitrarily 
chosen, the choice of m is strictly connected to the available data. In (Kim and Whitt 
2014a,  Section  4), the authors assert that having 10 arrivals in the one–hour slot 
9–10 a.m., it is necessary to combine data over 20 weeks in order to have a sufficient 
sample size (200 patient arrivals). However, being their approach based on equally 
spaced intervals, one–hour slots are also adopted during off–peak hours, for instance 
during the night. This implies that the sample size corresponding to data combina-
tion over 20 weeks for these slots could no longer be sufficient to guarantee good 
results. This is clearly pointed out in Table 3 in the “Appendix” where the sample 
size ki corresponding to some of the one-hour night slots is very low considering 
m = 13 weeks and it remains insufficient even if 26 weeks are considered (see sub-
sequent Table 5). The approach we propose overcomes this drawback since, for each 
choice of m, we determine the length of the intervals by solving  the optimization 
problem (12). Of course, there could be values of m such that problem (12) does not 
have feasible solutions, i.e. a partition such that the NHPP hypothesis holds and the 
results are consistent does not exists for such m.

To give an idea of the computational burden required by the application of our 
approach, we report the CPU elapsed time corresponding to one function/constraints 

(13)x0
i
= i − 1, i = 1,… , 25,
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evaluation used for solving the optimization problem 12. Table 2 indicates this time 
(in seconds) for different values of the parameter m.

This table evidences the increase of the computational effort required as the 
parameter m increases. We believe that the choice m = 13 represents a good 
trade–off between the accuracy of the results and computing time.

Now, to deeper examine how the parameters w and m affect the optimal partition, 
we performed a sensitivity analysis, focusing first on the case with fixed m and w 
varying. In particular, we have chosen to focus on m = 13 weeks since, as discussed 
above, in this case, an overly computational burden is not required and anyhow we 
expect that no substantial changes in the conclusions would be obtained with differ-
ent values of m. This is confirmed by further experimentation whose results are not 
reported here for the sake of brevity.

This analysis allows us to obtain several partitions that may be considered for a 
proper fine-tuning of w. In particular, we consider different values of w within the 
set {0, 0.1, 1, 10, 103} . Table 4 in the “Appendix” reports the optimal partitions 
obtained by solving the problem (12) for these values of w. In particular, Table 4 
includes the intervals of the partition, the value of the sample size ki correspond-
ing to each interval over 13 weeks and the results of the CU KS and dispersion 
tests, namely the p-value and the rejection/not rejection of the null hypothesis of 
the corresponding test.

In Fig. 5, for graphical comparison, we report the plots of the empirical arrival 
rate model �F(t) and its piecewise constant approximation �D(t) corresponding to 
the optimal partitions obtained.

Two effects can be clearly observed as w increases: on the one hand, on steep 
sections of �F(t) , shorter intervals are adopted to reduce large gaps between adja-
cent intervals; on the other hand, when �F(t) is approximately flat, a lower num-
ber of intervals may be sufficient to guarantee small gaps. This is confirmed by 
the two top plots in Fig.  5 which correspond to w = 0 and w = 0.1 . In fact, in 
the first plot ( w = 0 ), where only the fit error is included in the objective func-
tion, and in the second one ( w = 0.1 ), where anyhow the fit error is the dominant 
term of the objective function, the optimal partition is composed of a relatively 
large number of intervals. In particular, in the partition corresponding to w = 0.1 , 
fewer intervals are adopted during the daytime. As expected, a smaller number 
of intervals is attained when w = 1 , w = 10 and w = 103 . Note that, since on the 
steep section corresponding to the time slot 7:00–10:00 a.m. the maximum num-
ber of allowed intervals (due to the lower threshold value of one hour given by 
the choice � = 1 in (9)) is already used, the only way to decrease the smoothness 
term of the objective function is to enlarge the intervals during both the day and 
the night. It is worth noting that for w = 103 , the number of intervals increases if 

Table 2   CPU elapsed time corresponding to one function/constraints evaluation for different values of m 

m 4 9 13 17 22 26

Time (s) 13.01 16.12 26.07 28.10 36.21 44.14
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Fig. 5   Graphical comparison 
between the empirical arrival 
rate model �

F
(t) (in green) 

and the piecewise constant 
approximation �

D
(t) (in red) 

corresponding to the optimal 
partition obtained by solving 
the problem (12) (with m = 13 ) 
for different values of the 
parameter w. From top to bot-
tom: w = 0, 0.1, 1, 10, 103 (Color 
figure online)



	 A. De Santis et al.

1 3

compared with the case w = 10 . This occurs to offset the increase in the fit error 
term due to the use of a smaller number of intervals on the flatter sections. As a 
consequence, the partition has an unexpected interval at the end of the day.

We point out that for each value of w, the optimization algorithm finds an opti-
mal partition (of course feasible concerning  all the constraints), despite some 
constraints related to the CU KS test are violated at the initial partition, i.e. the 
one corresponding to x0 in (13), namely the standard assumption of one-hour slots 
usually adopted. This means that the data used, comply with the NHPP hypoth-
esis and are sufficient to appropriately define the piecewise constant approxima-
tion of the ED arrival rate.

Conversely, when the optimization algorithm does not find a feasible partition, 
the CU KS test or the dispersion test related to some Ti are never satisfied. This 
implies that the process is not conforming to the NHPP hypothesis or that the 
data are overdispersed. This is clearly highlighted by our subsequent experimen-
tation where we set w = 1 , letting m varying within the set {5, 9, 17, 22, 26}.

First, in Table 5 in the “Appendix” we report the results of CU KS and dispersion 
tests applied to the partition corresponding to the starting point x0 in (13), for these 
different values of m. Once more, this table evidences that the use of equally spaced 
intervals of one-hour length during the whole day can be inappropriate. As an exam-
ple, see the results of the tests on the time slot 02:00–03:00. Moreover, note that, 
for all these values of m, the initial partition corresponding to the starting point x0 is 
infeasible, except when m = 5 . Indeed, the constraints corresponding to CU KS and 
dispersion tests are violated for some Ti , meaning that the validity of the standard 
assumption of one-hour time slots strongly depends on the time period considered 
for using the collected data. To this aim, a strength of our approach is its ability 
to assist in the selection of a reasonable value for m. If there is no value of m such 
that the optimization algorithm determines an optimal solution (due to infeasibility), 
then it may be inappropriate to consider the ED arrival process in hand as NHPP.

The subsequent Table 6 in the “Appendix” includes the optimal partitions obtained 
by solving problem the (12) for the considered values of m ∈ {5, 9, 17, 22, 26} . Like 
the previous tables, Table 6 includes the intervals of the partition, the value of the 
sample size ki corresponding to each interval and the results of CU KS and disper-
sion tests. For all the considered values of m, the optimization algorithm determines 
an optimal solution with the only exception of m = 26 . In this latter case, the maxi-
mum number of function evaluations allowed is not enough to compute an optimal 
solution: in fact, we obtain an infeasible solution since the CU KS test related to the 
last interval of the day is not satisfied. This could be partially unexpected since more 
accurate results should be obtained when considering greater sample size. However, 
by adding the last four weeks (passing from m = 22 to m = 26 ) which corresponds 
to June, the data become affected by a seasonal trend and the NHPP assumption is 
no longer valid. This confirms the remark reported at the end of Sect. 3 about the 
need of model calibration for possibly taking into account seasonality.

In Fig. 6 we report a graphical comparison between the empirical arrival rate 
model �F(t) and the piecewise constant approximation �D(t) corresponding to the 
optimal partitions obtained for the considered values of m. We observe that the 
variability of �F(t) reduces as the value of m increases since averaging on more 
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data leads to flattening the fluctuation. Despite these rapid oscillations and unlike 
the other considered values of m, for m = 5 the empirical model �F(t) shows a 
constant trend during both the night and day hours. This results in a piecewise 
constant approximation �D(t) that is flat in all the time slots of the 24 h of the 
day except the ones related to the morning hours, for which many intervals are 
used. To guarantee a good fitting error between �D(t) and �F(t) , it would be nec-
essary to use shorter intervals, but this is not allowed by the choice � = 1 in the 

Fig. 6   Graphical comparison 
between the empirical arrival 
rate model �

F
(t) (in green) 

and the piecewise constant 
approximation �

D
(t) (in red) 

corresponding to the optimal 
partition obtained by solving 
the problem (12) (with w = 1 ) 
for different values of the 
parameter m. From top to bot-
tom: m = 5, 9, 17, 22, 26 (Color 
figure online)
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constraints  (9). For the other considered values of m, the number of intervals 
increases, leading to partitions that improve the fitting error if compared with the 
case m = 5 . In particular, we observe that the piecewise constant approximation 
�D(t) obtained for m = 22 benefits from the lower fluctuations resulting from aver-
aging more data. Therefore, as expected, using the maximum number of available 
data leads to the most accurate piecewise constant approximation. However, when 
considering too much data, seasonal phenomena could give rise to the rejection 
of the null hypothesis of the considered tests, as observed for the case m = 26 . 
Moreover, as highlighted at the end of Section 5 in Kim and Whitt (2014a), a ten-
dency to reject the NHPP hypothesis (i.e. the null hypothesis of the CU KS test) 
may be encountered when the sample size is large. In fact, a larger sample size 
requires stronger evidence of the null hypothesis for the test to be passed. Not-
withstanding, our approach can overcome these drawbacks, providing us with an 
optimal strategy to identify the best way of using the collected data.

5 � A preliminary assessment

As we already mentioned, this paper represents the first step toward the development 
of a complete and accurate DES model of the ED under study, thus it is only focused 
on modeling patient arrivals. However, it could be interesting to preliminary assess 
the impact of the method we propose in modeling the overall patient flow through 
the ED. Unfortunately, at this stage, we do not have detailed information concerning 
all the many processes inside the ED after triage, hence we are still unable to con-
struct a complete simulation model of the ED. On the other hand, for evaluating the 
actual consequences of the proposed arrival process approximation, it is enough to 
construct a simplified model which includes only patient arrivals and triage, being 
the latter the first process encountered by a patient after arrival and the one most 
affected by patient arrivals process. This, of course, must be considered only a pre-
liminary assessment.

In this simplified model, triage is modeled as “seize-delay-release” process where 
the seized resource is a dedicated nurse and the delay (the triage time in hours) is 
assumed distributed according to the Weibull distribution WEIBULL(�, �) with 
� = 3 and � = 0.1 . Such distribution and its parameters have been obtained using a 
statistical analysis of available data on triage process times. The model has been 
implemented by using Ucar et al. (2019), a process–oriented and trajectory–based 
DES package for R language. In running simulations, we used the following setting: 
30 independent replications each of 14 weeks length and warming–up period of 1 
week.
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In order to perform a significant assessment of the method we propose for patient 
arrivals, we compared results obtained by the following scenarios:

–	 use of real data for generating patients arrivals for the first 13 weeks of the year 
2018;

Fig. 7   Average number of patient queued waiting for the triage

Fig. 8   Average of waiting times before the triage
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–	 use of our method (with different choices of the weight w) for defining the NHPP 
process of patient arrivals;

–	 use of the standard method which considers 24 one–hour intervals for defining 
the NHPP process of patient arrivals.

We choose to use as KPIs in this comparison those mostly affected by the arrival 
process, namely

–	 average number of patients queued waiting for the triage;
–	 average patient waiting time before the triage.

In Figs. 7 and in 8 we report these KPIs on an hourly basis. In particular, we report 
results obtained by the real data (as-is status), those obtained using  our approach 
(using w = 0 and w = 10 ) and the ones derived from the partition with 24 one–hour 
intervals.

 
We can observe from both figures, that the finer discretizations, i.e. those cor-

responding to one-hour slots and to w = 0 (18 intervals), provide results closer to 
the real process. On the other hand, the grosser partition obtained with w = 10 , cor-
responding to 10 intervals, maintains a good fit with the real process, noticing that 
a small decrease in accuracy is evidenced in time interval 11:00–13:00 where the 
real data feature high variability while the partition provided by our method with 
( w = 10 ) generates a wide interval with a  constant rate from 9:00 to 14:00 (see 
Fig. 5). Therefore a good accuracy is obtained with a limited number of intervals 
that provide the management with a better scenario for planning the resource alloca-
tion for the ED services.

6 � Conclusions

In this work, we examined the arrival process to EDs by providing a novel meth-
odology that can  improve the reliability of the modeling  approaches frequently 
used to deal with this complex system, i.e. the Discrete Event Simulation mod-
eling. Following the literature, we adopted the standard assumption of represent-
ing the ED arrival process as an NHPP, which is suitable for modeling strongly 
time-varying processes. In particular, the final goal of the proposed approach is 
to accurately estimate the unknown arrival rate, i.e. the time-dependent parameter 
of the NHPP, by using a reasonable piecewise constant approximation. To this 
aim, an integer nonlinear black–box optimization problem is solved to determine 
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the optimal partition of the 24 h into a suitable number of non equally spaced 
intervals. To guarantee the reliability of this estimation procedure, two types of 
statistical tests are considered as constraints for each interval of any candidate 
partition: the CU KS test must be satisfied to ensure the consistency between the 
NHPP hypothesis and the ED arrivals; the dispersion test must be satisfied to 
avoid the overdispersion of data. To the best of our knowledge, our methodology 
represents the first optimization-based approach adopted for determining the best 
stochastic model for the ED arrival process.

The extensive experimentation we performed on data collected from an ED of a 
big hospital in Italy, shows that our approach can find a piecewise constant approxi-
mation which represents a good trade-off between a small fit error with the empirical 
arrival rate model and the smoothness of the approximation. This result is accom-
plished by the optimization algorithm, despite some constraints at the starting point, 
which corresponds to the commonly adopted partition composed of one-hour time 
slots, are violated. Moreover, some significant sensitivity analyses are performed to 
investigate the fine-tuning of the two parameters affecting the quality of the piece-
wise constant approximation: the weight of the smoothness of the approximation in 
the objective function (concerning the fit error) and the number of weeks considered 
from the arrivals data. While the former can be arbitrarily chosen by a user accord-
ing to the desired level of smoothness, the latter affects the accuracy of the arrival 
rate estimation. In general, the more weeks are considered, the more accurate is the 
arrival rate approximation, as long as the NHPP assumption still holds and the data 
do not become overdispersed.

Further experimentation allowed us to perform a preliminary assessment of the 
proposed approach, monitoring the number of patients queued at the triage and the 
corresponding waiting time obtained in a simplified simulation model representing 
only the initial passenger flow through the ED, namely the arrivals and the triage 
processes. The results showed that it is possible to adopt a grosser partition of the 
24 h, which is preferable to the management point of view, still ensuring a good fit 
with the real data process when compared with that of a plain partition with shorter 
equally spaced intervals.

As regards future work, to deeper analyze the robustness of the proposed 
approach, we could use alternative statistical tests, such as the Lewis and the Log 
tests described in Kim and Whitt (2014a), in place of the CU KS test. Moreover, 
whenever Discrete Event Simulation modeling is the chosen methodology to study 
ED operation, a model calibration approach could be also used to determine the best 
value of the weight used in the objective function to penalize the “smoothness term”. 
The optimal value of this parameter could be obtained by minimizing the deviation 
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between the simulation outputs and the corresponding key performance indicators 
computed through the data. This enables to obtain a representation of the ED arrival 
process that leads to an improved simulation model of the system under study.

Appendix

In this “Appendix” we report the detailed results of the CU KS and dispersion tests 
related to the partitions considered throughout the paper (Tables 3, 4, 5, 6).

Table 3   Results of the CU 
KS and dispersion tests (with 
a significance level of 0.05) 
applied to each interval of the 
partition corresponding to the 
starting point x0

The considered number of weeks is m = 13 . For each interval of 
each partition, the sample size of the dispersion test is m. H0 denotes 
the null hypothesis of the corresponding test

Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

00:00 – 01:00 48 0.836 Not rejected 0.801 Not rejected
01:00 – 02:00 38 0.950 Not rejected 0.450 Not rejected
02:00 – 03:00 22 0.027 Rejected 0.521 Not rejected
03:00 – 04:00 24 0.752 Not rejected 0.652 Not rejected
04:00 – 05:00 21 0.668 Not rejected 0.366 Not rejected
05:00 – 06:00 32 0.312 Not rejected 0.524 Not rejected
06:00 – 07:00 29 0.634 Not rejected 0.538 Not rejected
07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected
08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected
09:00 – 10:00 136 0.635 Not rejected 0.803 Not rejected
10:00 – 11:00 143 0.039 Rejected 0.966 Not rejected
11:00 – 12:00 154 0.325 Not rejected 0.999 Not rejected
12:00 – 13:00 132 0.858 Not rejected 0.948 Not rejected
13:00 – 14:00 121 0.738 Not rejected 0.984 Not rejected
14:00 – 15:00 125 0.885 Not rejected 0.500 Not rejected
15:00 – 16:00 127 0.928 Not rejected 0.610 Not rejected
16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected
17:00 – 18:00 111 0.769 Not rejected 0.516 Not rejected
18:00 – 19:00 102 0.458 Not rejected 0.912 Not rejected
19:00 – 20:00 100 0.095 Not rejected 0.527 Not rejected
20:00 – 21:00 101 0.656 Not rejected 0.586 Not rejected
21:00 – 22:00 115 0.763 Not rejected 0.604 Not rejected
22:00 – 23:00 101 0.916 Not rejected 0.305 Not rejected
23:00 – 24:00 70 0.864 Not rejected 0.104 Not rejected
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Table 4   Results of the CU KS and dispersion tests (with a significance level of 0.05) applied to each 
interval of the optimal partition obtained by solving problem (12) for different values of the parameter w, 
with m fixed to 13 weeks

w Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

0 00:00 – 01:00 48 0.836 Not rejected 0.801 Not rejected
01:00 – 02:00 38 0.950 Not rejected 0.450 Not rejected
02:00 – 05:00 67 0.504 Not rejected 0.100 Not rejected
05:00 – 06:00 32 0.312 Not rejected 0.524 Not rejected
06:00 – 07:00 29 0.634 Not rejected 0.538 Not rejected
07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected
08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected
09:00 – 10:00 136 0.635 Not rejected 0.803 Not rejected
10:00 – 12:00 297 0.433 Not rejected 0.994 Not rejected
12:00 – 13:00 132 0.858 Not rejected 0.948 Not rejected
13:00 – 16:00 373 0.958 Not rejected 0.502 Not rejected
16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected
17:00 – 19:00 213 0.999 Not rejected 0.937 Not rejected
19:00 – 20:00 100 0.095 Not rejected 0.527 Not rejected
20:00 – 21:00 101 0.656 Not rejected 0.586 Not rejected
21:00 – 22:00 115 0.763 Not rejected 0.604 Not rejected
22:00 – 23:00 101 0.916 Not rejected 0.305 Not rejected
23:00 – 24:00 70 0.864 Not rejected 0.104 Not rejected

0.1 00:00 – 01:00 48 0.836 Not rejected 0.801 Not rejected
01:00 – 02:00 38 0.950 Not rejected 0.450 Not rejected
02:00 – 05:00 67 0.504 Not rejected 0.100 Not rejected
05:00 – 06:00 32 0.312 Not rejected 0.524 Not rejected
06:00 – 07:00 29 0.634 Not rejected 0.538 Not rejected
07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected
08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected
09:00 – 10:00 136 0.635 Not rejected 0.803 Not rejected
10:00 – 12:00 297 0.433 Not rejected 0.994 Not rejected
12:00 – 13:00 132 0.858 Not rejected 0.948 Not rejected
13:00 – 16:00 373 0.958 Not rejected 0.502 Not rejected
16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected
17:00 – 18:00 111 0.769 Not rejected 0.516 Not rejected
18:00 – 22:00 418 0.660 Not rejected 0.987 Not rejected
22:00 – 23:00 101 0.916 Not rejected 0.305 Not rejected
23:00 – 24:00 70 0.864 Not rejected 0.104 Not rejected
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Table 4   (continued)

w Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

1 00:00 – 02:00 86 0.825 Not rejected 0.709 Not rejected

02:00 – 05:00 67 0.504 Not rejected 0.100 Not rejected

05:00 – 07:00 61 0.739 Not rejected 0.313 Not rejected

07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected

08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected

09:00 – 15:00 811 0.073 Not rejected 0.955 Not rejected

15:00 – 16:00 127 0.928 Not rejected 0.610 Not rejected

16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected

17:00 – 18:00 111 0.769 Not rejected 0.516 Not rejected

18:00 – 24:00 589 0.059 Not rejected 0.922 Not rejected
10 00:00 – 02:00 86 0.825 Not rejected 0.709 Not rejected

02:00 – 05:00 67 0.504 Not rejected 0.100 Not rejected
05:00 – 07:00 61 0.739 Not rejected 0.313 Not rejected
07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected
08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected
09:00 – 15:00 811 0.073 Not rejected 0.955 Not rejected
15:00 – 16:00 127 0.928 Not rejected 0.610 Not rejected
16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected
17:00 – 24:00 700 0.063 Not rejected 0.720 Not rejected

103 00:00 – 02:00 86 0.825 Not rejected 0.709 Not rejected
02:00 – 06:00 99 0.451 Not rejected 0.162 Not rejected
06:00 – 07:00 29 0.634 Not rejected 0.538 Not rejected
07:00 – 08:00 59 0.424 Not rejected 0.252 Not rejected
08:00 – 09:00 86 0.393 Not rejected 0.734 Not rejected
09:00 – 15:00 811 0.073 Not rejected 0.955 Not rejected
15:00 – 16:00 127 0.928 Not rejected 0.610 Not rejected
16:00 – 17:00 117 0.479 Not rejected 0.987 Not rejected
17:00 – 18:00 111 0.769 Not rejected 0.516 Not rejected
18:00 – 22:00 418 0.660 Not rejected 0.987 Not rejected
22:00 – 24:00 171 0.053 Not rejected 0.681 Not rejected

From top to bottom: w = 0, 0.1, 1, 10, 103 . For each interval of each partition, the sample size of the dis-
persion test is equal to m. H0 denotes the null hypothesis of the corresponding test
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Table 5   Results of the CU KS and dispersion tests (with a significance level of 0.05) applied to each 
interval of the partition corresponding to the starting point x0

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

00:00 – 01:00 20 0.167 Not rejected 0.240 Not rejected
01:00 – 02:00 11 0.616 Not rejected 0.151 Not rejected
02:00 – 03:00 7 0.887 Not rejected 0.160 Not rejected
03:00 – 04:00 7 0.892 Not rejected 0.683 Not rejected
04:00 – 05:00 12 0.217 Not rejected 0.856 Not rejected
05:00 – 06:00 8 0.426 Not rejected 0.219 Not rejected
06:00 – 07:00 15 0.884 Not rejected 0.504 Not rejected
07:00 – 08:00 27 0.820 Not rejected 0.164 Not rejected
08:00 – 09:00 35 0.875 Not rejected 0.534 Not rejected
09:00 – 10:00 50 0.378 Not rejected 0.844 Not rejected
10:00 – 11:00 48 0.083 Not rejected 0.884 Not rejected
11:00 – 12:00 59 0.484 Not rejected 0.966 Not rejected
12:00 – 13:00 51 0.594 Not rejected 0.765 Not rejected
13:00 – 14:00 47 0.651 Not rejected 0.689 Not rejected
14:00 – 15:00 44 0.817 Not rejected 0.412 Not rejected
15:00 – 16:00 45 0.811 Not rejected 0.168 Not rejected
16:00 – 17:00 47 0.679 Not rejected 0.987 Not rejected
17:00 – 18:00 49 0.486 Not rejected 0.534 Not rejected
18:00 – 19:00 37 0.731 Not rejected 0.344 Not rejected
19:00 – 20:00 35 0.436 Not rejected 0.839 Not rejected
20:00 – 21:00 44 0.904 Not rejected 0.794 Not rejected
21:00 – 22:00 43 0.459 Not rejected 0.693 Not rejected
22:00 – 23:00 32 0.967 Not rejected 0.667 Not rejected
23:00 – 24:00 31 0.306 Not rejected 0.552 Not rejected
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Table 5   (continued)

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

00:00 – 01:00 33 0.106 Not rejected 0.527 Not rejected

01:00 – 02:00 22 0.658 Not rejected 0.488 Not rejected

02:00 – 03:00 13 0.031 Rejected 0.390 Not rejected

03:00 – 04:00 14 0.258 Not rejected 0.857 Not rejected

04:00 – 05:00 16 0.441 Not rejected 0.471 Not rejected

05:00 – 06:00 22 0.707 Not rejected 0.335 Not rejected

06:00 – 07:00 23 0.580 Not rejected 0.608 Not rejected

07:00 – 08:00 48 0.500 Not rejected 0.484 Not rejected

08:00 – 09:00 54 0.338 Not rejected 0.573 Not rejected

09:00 – 10:00 97 0.391 Not rejected 0.886 Not rejected

10:00 – 11:00 97 0.149 Not rejected 0.836 Not rejected

11:00 – 12:00 108 0.384 Not rejected 0.999 Not rejected

12:00 – 13:00 95 0.911 Not rejected 0.821 Not rejected

13:00 – 14:00 82 0.733 Not rejected 0.923 Not rejected

14:00 – 15:00 75 0.979 Not rejected 0.753 Not rejected

15:00 – 16:00 89 0.909 Not rejected 0.456 Not rejected

16:00 – 17:00 82 0.429 Not rejected 0.923 Not rejected

17:00 – 18:00 78 0.804 Not rejected 0.596 Not rejected

18:00 – 19:00 69 0.277 Not rejected 0.734 Not rejected

19:00 – 20:00 69 0.218 Not rejected 0.477 Not rejected

20:00 – 21:00 72 0.731 Not rejected 0.731 Not rejected

21:00 – 22:00 75 0.449 Not rejected 0.541 Not rejected

22:00 – 23:00 60 0.989 Not rejected 0.681 Not rejected

23:00 – 24:00 48 0.521 Not rejected 0.689 Not rejected
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Table 5   (continued)

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

17 00:00 – 01:00 73 0.729 Not rejected 0.472 Not rejected

01:00 – 02:00 48 0.708 Not rejected 0.291 Not rejected

02:00 – 03:00 39 0.009 Rejected 0.010 Rejected

03:00 – 04:00 32 0.203 Not rejected 0.622 Not rejected

04:00 – 05:00 28 0.706 Not rejected 0.652 Not rejected

05:00 – 06:00 38 0.125 Not rejected 0.607 Not rejected

06:00 – 07:00 35 0.908 Not rejected 0.327 Not rejected

07:00 – 08:00 70 0.788 Not rejected 0.075 Not rejected

08:00 – 09:00 121 0.786 Not rejected 0.577 Not rejected

09:00 – 10:00 174 0.421 Not rejected 0.729 Not rejected

10:00 – 11:00 186 0.332 Not rejected 0.939 Not rejected

11:00 – 12:00 203 0.474 Not rejected 0.999 Not rejected

12:00 – 13:00 176 0.698 Not rejected 0.986 Not rejected

13:00 – 14:00 164 0.589 Not rejected 0.992 Not rejected

14:00 – 15:00 161 0.983 Not rejected 0.570 Not rejected

15:00 – 16:00 168 0.506 Not rejected 0.815 Not rejected

16:00 – 17:00 153 0.361 Not rejected 0.996 Not rejected

17:00 – 18:00 149 0.596 Not rejected 0.528 Not rejected

18:00 – 19:00 134 0.761 Not rejected 0.909 Not rejected

19:00 – 20:00 140 0.101 Not rejected 0.637 Not rejected

20:00 – 21:00 141 0.709 Not rejected 0.760 Not rejected

21:00 – 22:00 153 0.938 Not rejected 0.855 Not rejected

22:00 – 23:00 129 0.887 Not rejected 0.393 Not rejected

23:00 – 24:00 94 0.950 Not rejected 0.296 Not rejected
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Table 5   (continued)

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

22 00:00 – 01:00 95 0.509 Not rejected 0.720 Not rejected

01:00 – 02:00 70 0.938 Not rejected 0.529 Not rejected

02:00 – 03:00 52 0.008 Rejected 0.022 Rejected

03:00 – 04:00 36 0.094 Not rejected 0.507 Not rejected

04:00 – 05:00 34 0.536 Not rejected 0.420 not rejected

05:00 – 06:00 46 0.045 Rejected 0.703 Not rejected

06:00 – 07:00 48 0.833 Not rejected 0.590 Not rejected

07:00 – 08:00 83 0.805 Not rejected 0.062 Not rejected

08:00 – 09:00 165 0.576 Not rejected 0.108 Not rejected

09:00 – 10:00 219 0.105 Not rejected 0.737 Not rejected

10:00 – 11:00 235 0.282 Not rejected 0.960 Not rejected

11:00 – 12:00 274 0.585 Not rejected 0.962 Not rejected

12:00 – 13:00 233 0.956 Not rejected 0.984 Not rejected

13:00 – 14:00 216 0.515 Not rejected 0.999 Not rejected

14:00 – 15:00 207 0.872 Not rejected 0.789 Not rejected

15:00 – 16:00 213 0.841 Not rejected 0.905 Not rejected

16:00 – 17:00 204 0.491 Not rejected 0.999 Not rejected

17:00 – 18:00 192 0.534 Not rejected 0.683 Not rejected

18:00 – 19:00 173 0.818 Not rejected 0.968 Not rejected

19:00 – 20:00 177 0.072 Not rejected 0.768 Not rejected

20:00 – 21:00 181 0.655 Not rejected 0.681 Not rejected

21:00 – 22:00 196 0.977 Not rejected 0.810 Not rejected

22:00 – 23:00 167 0.688 Not rejected 0.412 Not rejected

23:00 – 24:00 118 0.963 Not rejected 0.209 Not rejected
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Table 5   (continued)

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

26 00:00 – 01:00 112 0.171 Not rejected 0.679 Not rejected

01:00 – 02:00 75 0.933 Not rejected 0.377 Not rejected

02:00 – 03:00 67 0.012 Rejected 0.053 Not rejected

03:00 – 04:00 46 0.458 Not rejected 0.450 Not rejected

04:00 – 05:00 38 0.987 Not rejected 0.465 Not rejected

05:00 – 06:00 57 0.308 Not rejected 0.535 Not rejected

06:00 – 07:00 56 0.935 Not rejected 0.739 Not rejected

07:00 – 08:00 100 0.882 Not rejected 0.128 Not rejected

08:00 – 09:00 198 0.566 Not rejected 0.142 Not rejected

09:00 – 10:00 259 0.341 Not rejected 0.844 Not rejected

10:00 – 11:00 289 0.091 Not rejected 0.942 Not rejected

11:00 – 12:00 320 0.725 Not rejected 0.984 Not rejected

12:00 – 13:00 274 0.915 Not rejected 0.996 Not rejected

13:00 – 14:00 257 0.228 Not rejected 0.999 Not rejected

14:00 – 15:00 243 0.872 Not rejected 0.835 Not rejected

15:00 – 16:00 242 0.574 Not rejected 0.892 Not rejected

16:00 – 17:00 236 0.630 Not rejected 0.942 Not rejected

17:00 – 18:00 231 0.808 Not rejected 0.753 Not rejected

18:00 – 19:00 204 0.682 Not rejected 0.980 Not rejected

19:00 – 20:00 209 0.170 Not rejected 0.830 Not rejected

20:00 – 21:00 219 0.610 Not rejected 0.735 Not rejected

21:00 – 22:00 237 0.803 Not rejected 0.905 Not rejected

22:00 – 23:00 198 0.614 Not rejected 0.366 Not rejected

23:00 – 24:00 147 0.972 Not rejected 0.032 Not rejected

From top to bottom: m = 5, 9, 17, 22, 26 . For each interval of each partition, the sample size of the dis-
persion test is m. H0 denotes the null hypothesis of the corresponding test
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Table 6   Results of the CU KS and dispersion tests (with a significance level of 0.05) applied to each 
interval of the final (infeasible) partition obtained by solving problem  12 for different values of the 
parameter m, with w fixed to 1

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

5 00:00 – 06:00 65 0.068 Not rejected 0.472 Not rejected
06:00 – 07:00 15 0.884 Not rejected 0.504 Not rejected
07:00 – 08:00 27 0.820 Not rejected 0.164 Not rejected
08:00 – 09:00 35 0.875 Not rejected 0.534 Not rejected
09:00 – 10:00 50 0.378 Not rejected 0.844 Not rejected
10:00 – 12:00 107 0.734 Not rejected 0.938 Not rejected
12:00 – 13:00 51 0.594 Not rejected 0.765 Not rejected
13:00 – 14:00 47 0.651 Not rejected 0.689 Not rejected
14:00 – 15:00 44 0.817 Not rejected 0.412 Not rejected
15:00 – 24:00 363 0.214 Not rejected 0.568 Not rejected

9 00:00 – 02:00 55 0.249 Not rejected 0.607 Not rejected
02:00 – 04:00 27 0.309 Not rejected 0.501 Not rejected
04:00 – 05:00 16 0.441 Not rejected 0.471 Not rejected
05:00 – 06:00 22 0.707 Not rejected 0.335 Not rejected
06:00 – 07:00 23 0.580 Not rejected 0.608 Not rejected
07:00 – 08:00 48 0.500 Not rejected 0.484 Not rejected
08:00 – 09:00 54 0.338 Not rejected 0.573 Not rejected
09:00 – 16:00 643 0.060 Not rejected 0.717 Not rejected
16:00 – 17:00 82 0.429 Not rejected 0.923 Not rejected
17:00 – 18:00 78 0.804 Not rejected 0.596 Not rejected
18:00 – 22:00 285 0.919 Not rejected 0.989 Not rejected
22:00 – 23:00 60 0.989 Not rejected 0.681 Not rejected
23:00 – 24:00 48 0.522 Not rejected 0.689 Not rejected

17 00:00 – 02:00 121 0.094 Not rejected 0.535 Not rejected
02:00 – 05:00 99 0.098 Not rejected 0.067 Not rejected
05:00 – 07:00 73 0.650 Not rejected 0.203 Not rejected
07:00 – 08:00 70 0.788 Not rejected 0.075 Not rejected
08:00 – 09:00 121 0.786 Not rejected 0.577 Not rejected
09:00 – 10:00 174 0.421 Not rejected 0.729 Not rejected
10:00 – 14:00 729 0.089 Not rejected 0.995 Not rejected
14:00 – 16:00 329 0.982 Not rejected 0.410 Not rejected
16:00 – 17:00 153 0.361 Not rejected 0.996 Not rejected
17:00 – 18:00 149 0.596 Not rejected 0.528 Not rejected
18:00 – 22:00 568 0.586 Not rejected 0.926 Not rejected
22:00 – 24:00 223 0.071 Not rejected 0.793 Not rejected
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From top to bottom: m = 5, 9, 17, 22, 26 . For each interval of each partition, the sample size of the dis-
persion test is m. H0 denotes the null hypothesis of the corresponding test

Table 6   (continued)

m Interval k
i

CU KS test Dispersion test

p-value H0 p-value H0

22 00:00 – 02:00 165 0.198 Not rejected 0.743 Not rejected

02:00 – 06:00 168 0.117 Not rejected 0.122 Not rejected

06:00 – 07:00 48 0.833 Not rejected 0.590 Not rejected

07:00 – 08:00 83 0.805 Not rejected 0.062 Not rejected

08:00 – 09:00 165 0.576 Not rejected 0.108 Not rejected

09:00 – 10:00 219 0.105 Not rejected 0.737 Not rejected

10:00 – 14:00 958 0.097 Not rejected 0.994 Not rejected

14:00 – 16:00 420 0.952 Not rejected 0.561 Not rejected

16:00 – 17:00 204 0.491 Not rejected 0.999 Not rejected

17:00 – 18:00 192 0.534 Not rejected 0.683 Not rejected

18:00 – 22:00 772 0.436 Not rejected 0.968 Not rejected

22:00 – 23:00 167 0.688 Not rejected 0.412 Not rejected

23:00 – 24:00 118 0.963 Not rejected 0.209 Not rejected
26 00:00 – 01:00 112 0.171 Not rejected 0.679 Not rejected

01:00 – 02:00 75 0.933 Not rejected 0.378 Not rejected
02:00 – 06:00 208 0.072 Not rejected 0.080 Not rejected
06:00 – 07:00 56 0.935 Not rejected 0.739 Not rejected
07:00 – 08:00 100 0.882 Not rejected 0.128 Not rejected
08:00 – 09:00 198 0.566 Not rejected 0.142 Not rejected
09:00 – 10:00 259 0.341 Not rejected 0.844 Not rejected
10:00 – 11:00 289 0.091 Not rejected 0.942 Not rejected
11:00 – 12:00 320 0.725 Not rejected 0.984 Not rejected
12:00 – 13:00 274 0.915 Not rejected 0.996 Not rejected
13:00 – 15:00 500 0.439 Not rejected 0.971 Not rejected
15:00 – 16:00 242 0.574 Not rejected 0.892 Not rejected
16:00 – 18:00 467 0.895 Not rejected 0.939 Not rejected
18:00 – 21:00 632 0.643 Not rejected 0.950 Not rejected
21:00 – 22:00 237 0.803 Not rejected 0.905 Not rejected
22:00 – 24:00 345 0.034 Rejected 0.440 Not rejected
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