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Abstract. In this paper we are concerned with the design of a small low-cost, low-field multipolar magnet for
Magnetic Resonance Imaging with a high field uniformity. By introducing appropriate variables, the consid-
ered design problem is converted into a global optimization one. This latter problem is solved by means of a
new derivative free global optimization method which is a distributed multi-start type algorithm controlled by
means of a simulated annealing criterion. In particular, the proposed method employs, as local search engine,
a derivative free procedure. Under reasonable assumptions, we prove that this local algorithm is attracted
by global minimum points. Additionally, we show that the simulated annealing strategy is able to produce a
suitable starting point in a finite number of steps with probability one.

Key words. Magnetic Resonance Imaging – Global optimization – Simulated annealing – Derivative free
methods

1. Introduction

Magnetic Resonance Imaging (MRI) or Magnetic Resonance Tomography (MRT) [23,
16, 18, 3] is a powerful diagnosis instrument especially because of its non-invasive type,
its high resolution and its ability to scan even soft tissues. Patients undergoing an MRI
exam lie flat on a scanning table and are placed in a magnetic field created by a huge
magnet.

MRI is strongly affected by the uniformity of the magnetic field generated by this
magnet, in that, the more uniform the magnetic field is, the higher the resolution of
the images produced during the exam is. Another important issue is connected to the
dimension of the uniformity region. Indeed, it delimits the region that can be actually
scanned by the MR apparatus.

The present technology of medical application of MRI has recently evolved toward
very high magnetic field units (2-3 Tesla) based on super-conducting magnets with a
cost of a few million dollars. This reflects on the cost of an MRI analysis. The result is
that many fields of medicine cannot benefit from the use of these apparatus that are too
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expensive for pathologies which are considered marginal in comparison, for example,
to cardiac or cerebral diseases.

For this reason new kind of equipments are being devised with the purpose of low-
ering the cost of MRI analysis. They require new technology developments, particularly
in the magnet design. The main purpose is to build economical MRI systems focused to
dedicated applications. The more relevant ones are low-field MRI systems for orthopedic
applications.

Naturally, low field apparatus are inherently less sensitive than high field ones. How-
ever, this drawback can be overcome by a high uniformity of the magnetic field which
results in high resolution images.

Low field usually requires a lower magnet volume and weight, which imply a lower
cost.

To date, the few small MR units produced, present the following drawbacks

- a low field uniformity (over 50 ppm);
- a high cost essentially due to the lack of market competition.

In this frame the development of dedicated equipment based on low field magnets is
strategic for increasing the applications of MRI and their use in environments different
from radiological sites.

One possible technique to build a low field dedicated magnet is that of using perma-
nent magnets surrounded by an iron yoke to amplify the magnetic field. The presence of
this iron yoke requires a careful design to obtain the required properties. It, in fact, intro-
duces non linearities in the dependence of the field from the characteristics of the used
magnetic material. For this reason the design procedure heavily relays on optimization
procedures along with field computation programs.

To conclude, our main effort in this paper is aimed toward the design of a small low
cost, low field (0.08 T) MR apparatus with the following innovative properties:

1. a big uniformity region with respect to the dimension of the structure;
2. a high level of field uniformity.

The above design problem can be converted into an optimization problem with the
following properties. First of all, the objective function must represent the uniformity
of the magnetic field within the target region and hence it depends on the relationship
between the project variables and the magnetic field behavior. This implies that the
objective function is nonlinear and non convex which does not allow us to rule out the
presence of multiple local minimizers. Moreover, the behavior of the magnetic field is
not known analytically, but it can only be computed by means of some simulation code.
For this reason, the objective function can be considered as a black box with unavailable
derivatives.

As regards the project variables, besides their usual boundedness, they must sat-
isfy some design specifications. In particular, this turns out in nonlinear and non convex
constraints involving the model geometry and its feasibility.Anyway, the particular struc-
ture of the problem allows us to tackle them without using sophisticated mathematical
instruments.

In order to solve problems with the above features, we define a new derivative-
free global optimization method. The idea behind the proposed approach consists in
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performing several distributed derivative-free local minimizations starting from ran-
domly generated feasible points satisfying a simulated annealing acceptability criterion.

In Section 2 we describe model of the magnet and we define the corresponding
optimization problem. In Section 3 we introduce the new global optimization algorithm
along with its properties and we report some numerical results on a set of test problems
to show its efficiency. Finally, Section 4 is devoted to the results on the optimal design
problem.

We conclude this section by introducing some notation used throughout the text.
Given a vector or a scalar, say a, a subscript ai indicates the i-th element of a set.
Whereas, a superscript ak identify the k-th iterate of a generic algorithm. We write a+ to
denote max{0, a}. Moreover, for the sake of simplicity, given a m-tuple (a1, . . . , am) we
shall denote by (a1, . . . , am)k the m-tuple (ak

1, . . . , ak
m). Finally, we denote by B(x∗; ε)

the set {x ∈ R
n : ‖x − x∗‖ ≤ ε}.

2. Model description and problem definition

In this section we describe an abstract model of the multipolar magnet. Then, after
introducing and discussing some simplifying assumptions on the magnet, we define the
variables which describe the model. Finally, we state the optimal design problem in
terms of a global minimization constrained program. We remark that, since the practical
realization of a physical model of the magnet is very expensive, this very task can be
done only after the achievement of sound results which are precisely the purpose of the
present work.

We consider a model (M) of the multipolar magnet which has the shape of a cylinder
with an elliptical base. The elliptical shape of the magnet basis has been chosen to max-
imize the possibility of use in different situations (such as for the peripheral skeleton
and paediatrics).

The magnet (M) is composed of twelve elliptical iron rings with eighteen small per-
manent magnets screwed on each of them. The arbitrary choice of the number of rings
and magnets which compose the model, is due to the following reasons. As concerns
the rings, we have to conciliate the need of limiting the border effect, which requires
many rings, with the need of obtaining a low-cost structure, which, on the opposite,
would drive us to use as few rings as possible. As for the small magnets, their number is
directly connected with the requirement that the field intensity should be approximately
0.08 Tesla.

Moreover, for reasons which regard the future practical realization of the model, we
limit ourselves to consider every ring equal to each other both in terms of dimensions
of the semi-axes and in terms of the small magnets positioning. As a matter of fact, this
restrictive assumption, though resulting in a less flexible structure, would ease the indus-
trial building process. For the same reason, every small permanent magnet is assumed to
be equal to each other. Therefore, every ring has 236mm × 180mm long semi-axes and
is 30mm wide and 40mm thick (like the one depicted in Figure 1(a)) and every small
magnet has a cylindrical shape, with 42mm diameter and 30mm height (as shown in
figure 1(b)), and a residual magnetization Mr = 1.35 Tesla.
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Fig. 1.
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Given all the above assumptions on model (M), we would need 227 variables to
completely describe its geometry, that is, eleven displacement variables of the rings
with respect to a fixed ring plus eighteen position variables of the magnets on every
ring. Even though with all these variables the model would certainly have many degrees
of freedom, a balance is to be found among a sufficient elasticity of the model (more
variables) and the tractability of the underlying global optimization problem (less vari-
ables). In order to try and reduce the number of variables we have made some simplifying
assumptions on model (M).

First of all, we assume that two magnets are fixed on every ring and directed along the
short semi-axis. This seems reasonable if we seek for a uniform magnetic field directed
along their axis. Moreover, we assume that only four magnets can be freely positioned
on a quarter of ring and get the remaining twelve positions by reflection on the semi-axes
of the ring. Furthermore, we assume that the whole structure is symmetric with respect
to a plane parallel to the rings and which divides the model into two halves of six rings
(see figure 1(c)).

Under the above assumptions, we come up with a model which is fine from a construc-
tive point of view and which can be described by just 10 variables. However, practical
experiences showed that this model has too few degrees of freedom. Thus, we relax the
assumption that rings are equal to each other and we assume that only the first two rings
are equal. So, we introduce four more variables, that is, the offsets of the four outermost
rings with respect to the two innermost ones (see figure 2(b)). We chose these variables
because in this way we have a better control on the border effect.

As already said, the key feature of every MR apparatus is the uniformity of the
magnetic field within a specified region in space. In our case, this so-called uniformity
region is a cylinder (12 cm long) having an elliptical base with major and minor semi-
axes respectively 6 and 5 centimeters long, which is quite a large region with respect to
the dimension of the multipolar magnet itself.

To summarize, we consider as optimization variables

1. the positions (x1, . . . , x6) of the rings along the cylinder axis (see figure 2(b));
2. the angular positions (see figure 2(a)) of each row of small permanent magnets

(x7, . . . , x10), being a row constituted by magnets occupying the same position but
on different rings (as shown by figure 1(c));

3. the offsets (x11, . . . , x14) of the four outermost rings with respect to the two inner-
most ones (see figure 2(b)).

In spite of its simple structure and due to the high nonlinearities introduced by the
iron yoke, the field generated by model (M) can not be analytically computed. For this
reason, the multipolar magnet model, corresponding to a feasible choice of the above
mentioned variables, is computer rendered within a field simulation program which
predicts the behavior of the magnetic field by means of a sophisticated finite element
analysis. In particular, we employ RADIA (see [10, 4]) a reliable finite element simulator
released by the European Synchrotron Radiation Facility (ESRF) at Grenoble (France).
The simulation process carried out by this code can take up to a minute of CPU time on
a Pentium IV processor based computer.

Let XYZ be a system of Cartesian coordinates with origin at the center of the struc-
ture, X axis parallel to the cylinder axis and, Z and Y axes directed, respectively, along
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(a) Angles

(b) Displacements and offsets

Fig. 2. Optimization variables

the shortest and longest semi-axes of the cylinder base. As already said, we want the
magnetic field B generated by the multipolar magnet to be as uniform as possible within
the target region and directed along the Z axis.

In order to measure the uniformity of the magnetic field within the target region,
we just sample the three components of B on a grid of Np points uniformly distributed

inside the cylindrical region of interest. Let B
(i)
X (x), B

(i)
Y (x) and B

(i)
Z (x) be the three

components of the magnetic field measured at the i-th point of the grid, the objective
function will be
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U(x) =

Np∑

i=1

(
(B

(i)
Z (x) − B̄Z(x))2 + (B

(i)
X (x))2 + (B

(i)
Y (x))2

)

B̄Z(x)2
,

where x = (x1 . . . x14)
� and

B̄Z(x) =

Np∑

i=1

B
(i)
Z (x)

Np

.

As regards the constraints, they can be divided into four groups.
The first one consists of the following box constraints on the variables:

0 ≤ xi ≤ 300, i = 1, . . . , 6

0 ≤ xi ≤ 90, i = 7, . . . , 10

−10 ≤ xi ≤ 20, i = 11, . . . , 14.

The second group ensures rings to be separated one from another, namely the fol-
lowing inequalities must be satisfied:

g1(x) = −x1 + r < 0 (1)

gi(x) = xi−1 − xi + 2r < 0, i = 2, . . . , 6,

where r = 21 is the magnet radius. The third group of constraints ensures the ordering
of the angular positions of the magnets:

gi(x) = xi+1 − xi < 0, i = 7, . . . , 9. (2)

Finally there is a group of constraints which are meant to avoid magnets overlapping:

gi(x) < 0, i = 10, . . . , 49. (3)

These constraints are continuously differentiable but non convex. Since their expres-
sion is technical and does not enrich the paper, they are reported in Appendix.
We point out that the constraints g(x) < 0 can not be relaxed into g(x) ≤ 0 since
the simulator outcome is not reliable whenever gi(x) ≥ 0 for i = 1, . . . , 49. On the
other hand, the physics of the magnetic apparatus suggests that a good uniformity of the
magnetic field can not be obtained with points x such that g(x) = 0. For this reason, it
seems reasonable to assume that it is likely to find a feasible point x̃ such that g(x̃) < 0
and U(x̃) ≤ U(x) for every x such that g(x) = 0.
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Summarizing, our optimal design problem belongs to the following class of optimi-
zation problems1

min U(x)

g(x) < 0

l ≤ x ≤ u,

(M)

with the properties listed below:

(i) the objective function is of the black-box type in the sense that apart from its
continuity in the feasible set, no information on its structure is available and its
computation is expensive;

(ii) the objective function is not defined outside of the feasible set and the constraints
are continuous but non convex; on the other hand it is “relatively” easy to generate
feasible points and to remain in the feasible set;

(iii) it is possible to find a feasible point x̃ such that the set {x ∈ R
n : g(x) < 0, l ≤

x ≤ u, U(x) ≤ U(x̃)} is compact;
(iv) the objective function does not satisfy any convexity assumptions and hence the

problem can have local minimizers. Indeed, a local minimization algorithm applied
to this problem starting from different initial points produces different solutions
(see the results reported in Section 4).

Feature (i) eliminates the possibility of using those methods that exploit derivative knowl-
edge and forces us to employ methods which are not too expensive with respect to the
number of function evaluations. Feature (ii), on the one hand, requires that during the
minimization process only feasible points are explored and, on the other hand, implies
that the feasibility can be maintained without using sophisticated techniques. Feature
(iii) guarantees that Problem (M) admits a solution. Finally, feature (iv) qualifies (M) as
a global optimization problem so that a global optimization method is to be used.

From the above discussion it emerges that the solution method should be able to find
a global minimum point among the local ones without requiring any derivative knowl-
edge and using a limited number of function evaluations. Most of the global derivative
free methods usually require too many function evaluations to get a solution and are
able to efficiently tackle problems with only a few variables. Therefore, they are not
particularly well-suited to tackle problems with features (i)-(iv) (see also the introduc-
tion of [2] and the references therein). On the opposite, sufficiently good solutions of
minimization problems showing some or all of the features (i)-(iv) have been obtained
by using some algorithms belonging to the particular class of Controlled Random Search
(CRS) methods [8, 2, 5, 24, 25, 12, 17]. All these algorithms, though intended for uncon-
strained problems, are easily extendible to handle constraints of type (ii). Such methods
are usually very efficient in identifying the region where the global minimum point is
located, but they do not have a similar ability in determining a good approximation of the
global minimum point. Since the quality of the solution is of fundamental importance

1 A description of Problem (M) in the AMPL [11] syntax can be found at the URL
http://www.dis.uniroma1.it/∼liuzzi/papers/Model/MRmodel.zip. Although the
model is of public domain, to compute the objective function one should have a licensed version of
Mathematica [27] along with the freeware RADIA simulator package.
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to our application, we have tried to define a new algorithm which, hopefully, had the
same global capacity of CRS methods but an higher accuracy. The description of this
new algorithm is the topic of the next section.

3. Global optimization approach

We consider the following constrained problem

min f (x) (4)

x ∈ F ⊆ R
n,

where F = D ∩ S with D = {x ∈ R
n : l ≤ x ≤ u} and S an open set. For a given

x◦ ∈ R
n, we denote the level set of f (x) by

�(x◦) = {x ∈ F : f (x) ≤ f (x◦)}.
Throughout this section we shall assume that, even though no derivative knowledge is

available for the objective function, f (x) is twice continuously differentiable.
Given a feasible point x ∈ F , we denote by

A(x) = {d ∈ R
n : ∃ᾱ > 0, ∀α ∈ [0, ᾱ], x + αd ∈ F}

the set of feasible directions in x.

We define a stationary point of Problem (4) as a point x∗ ∈ F such that

∇f (x∗)T d ≥ 0, ∀ d ∈ A(x∗).

The algorithm we propose is based on an idea which is not new among optimization
practitioners, namely the repeated use of local minimization algorithms as local search
engine of a global minimization. In fact, it is well-known that good approximations of
minimum points can be obtained by using efficient local minimization algorithms. How-
ever, when a local algorithm starts far from a global minimum point, it can be trapped
into a local minimum. In order to overcome this last difficulty, we have followed the
approach proposed in [20] where:

- the starting points of the local searches are chosen at random according to a proba-
bility density function which is updated during the iterates of the algorithm so as to
be concentrated around a global minimum point of the problem;

- the local searches are performed by an algorithm which has the property that it is
attracted by any global minimum point.

As concerns the latter property, Proposition 1.12 in [1] shows that any gradient related
method is attracted by every strong local minimum point. An analogous result holds for
trust region algorithms (see e.g. [6]) which require derivative knowledge too. Unfor-
tunately, in our context we can not use any derivative-based method. However, the
following proposition shows that a similar result can be obtained without requiring any
derivative information.
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Proposition 1. Let f ∈ C2 and {xk} be a sequence of feasible points generated by an
iterative method xk+1 = xk + αkdk satisfying

f (xk+1) ≤ f (xk) − θ(αk)2‖dk‖2, (5)

for all k, where θ > 0. Then, for every global minimum x∗ of f (x) on F where ∇2f (x∗)
is positive definite, there exists an open set L containing x∗ such that, if xk̄ ∈ L for some
k̄ ≥ 0

- then xk ∈ L for all k ≥ k̄;
- if any accumulation point of the sequence {xk} is a stationary point of Problem (4),

then {xk} → x∗.

Proof. Let x∗ be a global minimum of f (x) on F with ∇2f (x∗) positive definite. Then
an ε̄ > 0 exists such that B(x∗, ε̄) ⊂ S and for all x ∈ B(x∗, ε̄), the matrix ∇2f (x) is
also positive definite. Denote by

γ = min
‖x − x∗‖ ≤ ε̄

‖z‖ = 1

zT ∇2f (x)z.
(6)

It obviously results γ > 0. Consider the open set

L = {x ∈ F | ‖x − x∗‖ < ε̄, f (x) < f (x∗) + ε̄2γ θ

2(2θ + γ )
} (7)

which, by continuity, is not empty. We claim that, if xk̄ ∈ L for some k̄ ≥ 0, then xk ∈ L
for all k ≥ k̄ and {xk} → x∗.
Indeed, by using Taylor’s theorem and the mean value theorem, we have

f (xk̄) − f (x∗) = ∇f (x∗)T (xk̄ − x∗)

+1

2
(xk̄ − x∗)T ∇2f (x∗ + λk̄(xk̄ − x∗))(xk̄ − x∗), (8)

where λk̄ ∈ (0, 1). Since, D ∩B(x∗, ε̄) is a convex set and B(x∗, ε̄) ⊂ S by hypothesis,
then xk̄ − x∗ is a feasible direction for Problem (4). By the assumption that x∗ is a
stationary point of Problem (4), we have that

∇f (x∗)T (xk̄ − x∗) ≥ 0. (9)

Now, (9), (8) and (6) imply

f (xk̄) − f (x∗) ≥ 1

2
(xk̄ − x∗)T ∇2f (x∗ + λk̄(xk̄ − x∗))(xk̄ − x∗) (10)

≥ 1

2
γ ‖xk̄ − x∗‖2.

Recalling the hypothesis f (xk+1) ≤ f (xk) − θ(αk)2‖dk‖2 we have

(αk̄)2‖dk̄‖2 ≤ 1

θ
(f (xk̄) − f (xk̄+1)) (11)

≤ 1

θ
(f (xk̄) − f (x∗)),
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where the second inequality follows from the hypothesis that x∗ is a global minimum.
By using (10) and (11), we have

‖xk̄+1 − x∗‖2 = ‖xk̄ − x∗ + αk̄dk̄‖2 (12)

≤ 2‖xk̄ − x∗‖2 + 2(αk̄)2‖dk̄‖2

≤ 4

γ
(f (xk̄) − f (x∗)) + 2

θ
(f (xk̄) − f (x∗))

= 2(2θ + γ )

γ θ
(f (xk̄) − f (x∗)).

Since xk̄ ∈ L we have

f (xk̄) − f (x∗) <
ε̄2γ θ

2(2θ + γ )
,

which, combined with (12) yields

‖xk̄+1 − x∗‖ < ε̄. (13)

Furthermore, by using again the hypothesis f (xk+1) ≤ f (xk) − θ(αk)2‖dk‖2, we have
that f (xk+1) ≤ f (xk) for all k and hence

f (xk̄+1) ≤ f (xk̄) < f (x∗) + ε̄2γ θ

2(2θ + γ )
(14)

From the above two inequalities, it follows that xk̄+1 ∈ B(x∗, ε̄) and similarly xk ∈ L
for all k ≥ k̄. In particular, since L ⊂ B(x∗, ε̄), then xk ∈ B(x∗, ε̄) for all k ≥ k̄. Since,
by definition, B(x∗, ε̄) is a compact set, the sequence {xk} will have at least one limit
point which by assumption must be a stationary point of Problem (4). Now, since f (x) is
strictly convex within B(x∗, ε̄), the only stationary point of Problem (4) within B(x∗, ε̄)
is the point x∗. Hence xk → x∗. ��
Remark. Proposition 1 has been stated in the case F = D ∩ S with D = {x ∈ R

n : l ≤
x ≤ u}. However, the same result holds even if D is a generic closed convex set.

The above proposition states that, under reasonable assumptions, all the iterates are
attracted by a strong global minimum point provided that one of them is sufficiently close
to it. Note that usually a well posed physical problem has isolated global minima. On the
other hand, if the problem has been carefully formulated, it is reasonable to assume that
the hessian of the objective function is positive definite on the global minimum points.
For this reason, the assumption on the positive definitiveness of ∇f (x∗) does not seem
too restrictive and it is likely to be verified.

In the literature some derivative free algorithms satisfying property (5) have been
proposed, see, for instance, [14], [21] and [13]. In [22] one of such methods has been
defined to solve box constrained minimization problems. In this work we adapt the
approach described in [22] to solve Problem (4). In particular, the proposed algorithm is
based on the following procedure, which performs a sampling of the objective function
along the coordinate axes.
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Procedure DF(x, α)

Data. γ > 0, δ ∈ (0, 1), θ ∈ (0, 1), di = ei and α̃i = α for i = 1, . . . , n.

1. Initialization: Set i = 1 and xi = x.
2. Direction choice:

2.1 Compute αi
max s.t. xi + αi

maxd
i ∈ ∂D and set α = min{α̃i , αi

max}.
If α > 0, f (xi + αdi) ≤ f (xi) − γ (α)2 and xi + αdi ∈ S,
then go to Step 4.

2.2 Compute αi
max s.t. xi − αi

maxd
i ∈ ∂D and set α = min{α̃i , αi

max}.
If α > 0, f (xi − αdi) ≤ f (xi) − γ (α)2 and xi − αdi ∈ S,
then set di = −di and go to Step 4.

3. Direction failure: Set ᾱ = 0, α̃i = θα, and go to Step 5.
4. Linesearch:

4.1 Let α̂ = min{αi
max,

α
δ
}.

If α = αi
max or f (xi + α̂di) > f (xi) − γ α̂2 or xi + α̂di �∈ S,

then set ᾱ = α, α̃i = α and go to step 5.
4.2 Set α = α̂ and go to step 4.1.

5. New point: Set xi+1 = xi + ᾱdi .
6. Stopping criterion: If i = n, then (x̃, α̃) = (xi+1, maxi=1,...,n{α̃i}), return

(x̃, α̃)

else set i = i + 1 and go to Step 2.

Then the local minimization algorithm is described below.

Procedure DFA(x◦, αtol)

Data. α◦ > 0.

1. Set j = 1 and xj = x◦.
2. Set (xj+1, αj ) = DF(xj , αj−1).
3. If αj > αtol then set j := j + 1 and go to step 2.

else return (xj+1, αj ).

Whenever αtol = 0, it is possible to show that Procedure DFA satisfies the following
properties.

Proposition 2. Assume that f ∈ C1 and that the level set �(x◦) is compact. Let {xj }
and {αj } be the sequences produced by Procedure DFA(x◦, 0), then:

(i) for every x◦ ∈ R
n, every accumulation point of the sequence {xj } is a stationary

point of Problem (4) and

lim
j→∞

αj = 0; (15)

(ii) for every global minimum x� where ∇2f (x�) is positive definite, then an open set
L exists such that if x◦ ∈ L then xj ∈ L for every index j and limj→∞ xj = x�.
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Proof. As regards the proof of point (i) we refer to [21]. Point (ii) follows directly from
Proposition 1 and the instructions of Procedure DF. ��

Equation (15) of the above proposition guarantees that Procedure DFA terminates
provided that αtol > 0. As for point (ii), it guarantees that if the starting point of a
local minimization is sufficiently close to a global minimum point with positive definite
Hessian, then the whole sequence converges to it. In order to ensure that this happens, in
the following algorithm (DFSA) we make use of the simulated annealing acceptability
criterion proposed in [20]. In particular, the basic idea is to let a local minimization
start from points chosen at random according to a probability density function propor-

tional to e
−(f (x)−fmin)+

T , where T is a parameter called “annealing temperature” which is
progressively decreased during the minimization process.

Algorithm DFSA
Data. α◦ > 0 and αtol > 0.

1. Compute an initial temperature T ◦, randomly choose a feasible point x◦, set
fmin = f (x◦) and xmin = x◦. Set k := 1.

2. Randomly choose a feasible point xk ∈ R
n and a scalar zk ∈ (0, 1).

3. If zk ≤ e
−(f (xk)−fmin)+

T k then go to Step 4,
else compute T k+1 and go to Step 6.

4. Compute (x̃k, α) = DFA(xk, αtol).
5. If f (x̃k) < fmin then set fmin = f (x̃k) and xmin = x̃k .
6. Set k := k + 1 and go to Step 2.

As concerns the updating of the temperature parameter T k at Step 3, we refer to the
updating rule reported in [20].

Recalling the analysis carried out in [20, 26] it is possible to prove the following
result.

Proposition 3. For every global minimum point x� of f (x) on F and for every ε > 0,
Step 3 of Algorithm DFSA accepts a point xk ∈ B(x∗; ε) ∩ F in a finite number of
iterations with probability one.

Proposition 3 guarantees that, for every global minimum point x� of f (x) on F with
positive definite Hessian, a point xk ∈ L (where L is the neighborhood of x� defined
in Proposition 1) is accepted in a finite number of steps with probability one. In turn,
Proposition 1 guarantees that a local minimization starting from such a point is attracted
by the global minimum.

In order to evaluate the efficiency of DFSA we have tested it on a set of well-
known global optimization test problems (see [2] and the references therein). These test
problems are essentially unconstrained in the sense that the bounds on the variables are
inactive at the global minimum point. Our choice is motivated by the fact that we want to
obtain a comparison as realistic as possible with a particular algorithm of the Controlled
Random search class, namely ACRS2 (see [5] for a complete description of ACRS).

2 ACRS has been recently released on the NEOS server [15, 7, 9] under the Global Optimization category.
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Algorithm ACRS iteratively improves a working set of p points initially chosen at
random on the feasible set F . At each iteration, the algorithm, selects at random n + 1
points of the current working set privileging those points with a lower function value.
Then the weighted centroid of the selected points is computed and the new trial point is
obtained by doing a weighted reflection of the worst point (among the selected ones) on
the centroid. The weights used to compute the centroid and to do the reflection adaptively
change during the iterations to better exploit the information gathered on the objective
function as the algorithm goes on. Finally, the working set is updated by replacing the
point with the highest function value with the new point provided that it is feasible and
has a function value lower than the maximum value over the working set. The algorithm
stops when the difference between the maximum and the minimum function values over
the working set, is below a prefixed tolerance tol.

Our choice of comparing DFSA with ACRS is mainly due to the fact that ACRS has
already been employed to tackle the magnetic resonance optimal design problem (see
[19]) as well as other optimal design problems of various types (see, e.g., [5, 8, 2]).

The results of Table 1 were obtained choosing p = 25n and tol = 10−6 for ACRS.
As concernes DFSA, we set αtol = 10−6 and chose to stop it whenever the test at Step
5 fails ten times consecutively. We note that tol and αtol are intentionally equal in order
to get comparable results.

Moreover, since DFSA andACRS use randomly generated points, the reported results
refer to the average behavior on 100 runs.

From Table 1, it clearly emerges the superiority of DFSA in terms of precision of
the computed solution for problems with dimension ranging from 10 to 100, which is
a feature we are interested in since we aim at obtaining a high uniformity level in the
optimal design problem (which, as already said, has 14 variables). Moreover, we note
that DFSA is worse than ACRS with respect to the number of objective function evalua-
tions when n ≤ 10. The two algorithms are comparable when n = 15, 20, while DFSA
becomes more and more efficient when n > 20. This behavior is essentially imputable
to the intimate difference between the two algorithms. As concerns DFSA, its multi-start
nature along with a poor stopping criterion are responsible for the high computational
burden of the algorithm. On the other hand, since every local minimization of algorithm
DFSA is carried out using a derivative free linesearch strategy, DFSA is able to locate the
global minimum point with a high precision. On the opposite, ACRS employs a simplex
based local search which allows it to locate a rough estimate of the global minimum
point very rapidly, especially for small problems, but at the expense of the accuracy.

In order to improve the efficiency of algorithm DFSA retaining its accuracy, we can
draw our inspiration fromACRS itself. Indeed, an important aspect of the latter algorithm
is that its working set is iteratively updated by performing, at each iteration, a single
step of a simplex based local search. Thus, no local search is carried out completely, as
opposed to DFSA, and this allows for a considerable reduction of function evaluations.
Moreover, the presence of such an array of points conveys a certain degree of nonmonot-
onicity thus improving the ability to find a global minimum point. Following these lines
we have introduced a working set W of m triples (x, f (x), α) where, in particular, α is
the current step of the derivative free algorithm at x. The working set W can be updated
either by performing a single step of the derivative free algorithm (using Procedure DF)
or by replacing the worst point, namely the one with highest objective function value,
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Table 1. Numerical comparison between DFSA and ACRS algorithms.

DFSA ACRS
PROBLEM n nf F. min F. aver. nf F. min F. aver

S-H. Camel B. 2 2068 −1.0316 −1.0316 522 −1.0316 −1.0316
Treccani 2 970 0.000D+00 0.000D+00 485 0.178D-09 0.118D-07
Quartic 2 1697 −0.3524 −0.3524 524 −0.3524 −0.3524
Schubert 2 2246 −186.7309 −186.7309 2271 −186.7309 −186.7309
Schub. pen. 1 2 2098 −186.7309 −179.3470 1255 −186.7309 −186.1988
Schub. pen. 2 2 1979 −186.7309 −178.5920 1078 −186.7309 −186.3615
Shekel m = 5 4 4126 −10.1532 −10.1027 3704 −10.1532 −8.7748
Shekel m = 7 4 3896 −10.4029 −10.3502 2119 −10.4029 −10.3362
Shekel m = 10 4 3610 −10.5364 −10.4694 2191 −10.5364 −10.2402
Expon. 2 1026 −1.0000 −1.0000 379 −1.0000 −1.0000
Expon. 4 2052 −1.0000 −1.0000 1002 −1.0000 −1.0000
Cos-mix 2 895 −0.2000 −0.2000 471 −0.2000 −0.2000
Cos-mix 4 2156 −0.4000 −0.4000 1310 −0.4000 −0.4000
Hartman 3 3248 −3.8628 −3.8628 754 −3.8628 −3.8628
Hartman 6 7075 −3.3224 −3.3224 2217 −3.3224 −3.3224
5n loc-min 2 959 0.197D-13 0.497D-12 545 0.345D-10 0.106D-07
5n loc-min 5 2696 0.891D-14 0.198D-12 1587 0.443D-08 0.251D-07
5n loc-min 10 5474 0.548D-14 0.691D-13 3912 0.288D-07 0.268D-05
5n loc-min 15 8847 0.314D-14 0.603D-13 7935 0.136D-05 0.582D-04
5n loc-min 20 11285 0.248D-14 0.530D-13 12676 0.561D-04 0.331D-03
5n loc-min 30 17026 0.161D-14 0.304D-13 23262 0.428D-03 1.074E-03
5n loc-min 50 29261 0.826D-15 0.119D-13 53077 0.493D-03 1.371E-03
5n loc-min 100 58473 0.501D-15 0.467D-14 139575 3.463E-03 1.021E-02
10n loc-min 2 1101 0.282D-13 0.116D-10 599 0.795D-11 0.959D-08
10n loc-min 5 2991 0.226D-13 0.219D-11 1715 0.209D-08 0.252D-07
10n loc-min 10 6968 0.119D-13 0.460D-12 4769 0.282D-06 0.469D-04
10n loc-min 15 10214 0.644D-14 0.267D-12 9441 0.227D-04 0.844D-03
10n loc-min 20 13260 0.566D-14 0.134D-12 14245 0.287D-03 0.0031
10n loc-min 30 22682 0.252D-14 0.639D-13 25575 2.220E-03 1.063E-02
10n loc-min 50 39270 0.932D-15 0.622D-03 59789 6.952E-03 2.623E-02
10n loc-min 100 83315 0.884D-15 0.144D-13 155816 6.743E-02 2.523E-01
15n loc-min 2 1057 0.377D-14 0.808D-12 496 0.433D-10 0.951D-08
15n loc-min 5 2958 0.218D-14 0.221D-12 1487 0.338D-08 0.286D-07
15n loc-min 10 6866 0.309D-14 0.187D-12 3820 0.500D-07 0.337D-05
15n loc-min 15 10871 0.23D-14 0.728D-13 8566 0.881D-06 0.377D-03
15n loc-min 20 15725 0.142D-14 0.109D-03 11888 0.362D-04 0.397D-03
15n loc-min 30 24601 0.196D-14 0.493D-13 25050 1.613E-03 7.902E-03
15n loc-min 50 42792 0.149D-14 0.11D-03 63912 1.215E-02 4.635E-02
15n loc-min 100 91848 0.139D-14 0.248D-13 160518 2.852E-01 9.126E-01
Griewank 2 1284 0.000D+00 0.873D-02 781 0.117D-09 0.912D-03
Griewank 5 3565 0.000D+00 0.164D-01 2306 0.524D-08 0.291D-07
Griewank 10 5375 0.000D+00 0.000D+00 5882 0.269D-07 0.129D-06
Griewank 15 8049 0.00D+00 0.00D+00 11210 0.511D-06 0.646D-05
Griewank 20 11325 0.000D+00 0.000D+00 17400 0.2D-05 0.377D-04
Griewank 30 17767 0.00D+00 0.00D+00 31969 0.440D-04 0.158D-03
Griewank 50 29579 0.00D+00 0.00D+00 71379 0.201D-03 0.550D-03
Griewank 100 59263 0.00D+00 0.00D+00 199537 1.054E-03 2.144E-03
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with a point produced by a partial minimization carried out by means of Procedure DFA
starting from a point accepted by the simulated annealing criterion.

Algorithm DDFSA

1. Data: α◦ > 0.
2. Compute an initial temperature T ◦, set k := 0.
3. Generate the initial working set Wk = {(xi, f (xi), αi)

k, i = 1, 2, . . . m}.
4. Set

(xmin, fmin, αmin)
k := (x̄, f̄ , ᾱ) ∈ Wk : f̄ = min

(x,f (x),α)∈Wk
f (x),

(xmax, fmax, αmax)
k := (x̄, f̄ , ᾱ) ∈ Wk : f̄ = max

(x,f (x),α)∈Wk
f (x),

αk
stop = max

(x,f (x),α)∈Wk
α.

5. Randomly choose a feasible point xk ∈ R
n and a scalar zk ∈ (0, 1).

6. If zk > e
−(f (xk)−fmin)+

T k compute T k+1 and go to step 9.
7. Compute (x̃k, α̃k) = DFA(xk, αk

stop).

8. If f (x̃k) < f k
max then set

Wk+1 := (Wk \ {(xmax, fmax, αmax)
k}) ∪ {(x̃k, f (x̃k), α̃k)},

k := k + 1 and go to step 4.
9. For every triple (xi, f (xi), αi)

k ∈ Wk , set (x̃k
i , α̃k

i ) = DF(xk
i , αk

i ). Set

Wk+1 :=
m⋃

i=1

{x̃k
i , f (x̃k

i ), α̃k
i )},

k := k + 1 and go to step 4.

As regards the initial working set generation at step 3, we have chosen the following
strategy: every element of W ◦ is obtained by applying procedure DF starting from a
feasible point accepted by the simulated annealing criterion.

Algorithm DDFSA enjoys an analogous property to that stated by Proposition 3. In
particular, for the sake of completeness, we report the following proposition.

Proposition 4. For every global minimum point x� of f (x) on F and for every ε > 0,
Step 6 of Algorithm DDFSA accepts a point xk ∈ B(x∗; ε) ∩ F in a finite number of
iterations with probability one.

In order to exploit the above proposition, we need a further property, which actually
guarantees the existence of a gap between the global minimum value and the lowest
value of f (x) on a local, non global, minimum point.
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Proposition 5. Assume that �(x◦) is a compact set and that every global minimum point
x� of f (x) on F is such that ∇2f (x�) is positive definite, then δ > 0 exists such that

f (x�) + δ < inf
x∈S̃(x◦)

f (x),

where S̃(x◦) is the set of local-nonglobal minimum points of f (x) in �(x◦).

Proof. Let S� be the set of global minimum points of f (x) on F , namely,

S� = {x� ∈ R
n : f (x�) ≤ f (x), ∀ x ∈ R

n}.
By assumption, for every x� ∈ S�, f (x) is strictly convex within a neighborhood of x�,
that is there exists a positive constant σx� such that:

f (x) > f (x∗), ‖∇f (x)‖ �= 0, ∀x : ‖x − x�‖ < σx�, x �= x�. (16)

Now it is possible to define the following set

Ŝ(x◦) =
⋂

x�∈S�

{
x ∈ �(x◦) : ‖x − x�‖ ≥ σx�

}
.

The compactness assumption on the level set �(x◦) implies that also the set Ŝ(x◦) is
compact and, hence, there exists x̂ ∈ Ŝ(x◦) such that:

f (x̂) = min
x∈Ŝ(x◦)

f (x).

By the definition of Ŝ(x◦), we can write

f (x̂) = f (x∗) + 2δ.

Since S�
⋂

Ŝ(x◦) = ∅ and S̃(x◦) ⊆ Ŝ(x◦), we have for all x� ∈ S� and for all x ∈ S̃(x◦):

f (x�) + δ < f (x̂) ≤ f (x),

which proves the proposition. ��
The above proposition and the continuity of f (x) guarantee that the set

A(x�) =
{
x ∈ F : f (x) ≤ f (x�) + f̃ − f (x�)

2

}
,

where f̃ = inf
x∈S̃(x◦) f (x), is not empty. Hence, under the assumptions of Proposition

5, an ε̄ > 0 exists such that B(x∗; ε̄) ∩ F ⊆ L ∩ A(x�)(where L is the neighborhood of
x� defined in Proposition 1). Hence a point xk ∈ L∩A(x�) is accepted and inserted into
the working set Wk as xk

ı̄ in a finite number of steps with probability one. Moreover,
such a point xk

ı̄ can be substituted, at Step 8 of Algorithm DDFSA, only by a point x̃k

which belongs to L ∩ A(x�) too. Now, Proposition 1 implies that starting from such a
point xk

ı̄ the local minimization at step 9 produces a sequence of points which is attracted
by the global minimum.
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Table 2. Numerical results of DDFSA.

DDFSA
PROBLEM n nf F. min F. aver.
S-H. Camel B. 2 749 −1.0316 −1.0316
Treccani 2 999 0.106D-13 0.247D-12
Quartic 2 759 −0.3524 −0.3524
Schubert 2 1296 −186.7309 −182.9417
Schub. pen.1 2 853 −186.7309 −181.1954
Schub. pen.2 2 793 −186.7309 −183.4487
Shekel m = 5 4 1833 −10.1532 −10.1532
Shekel m = 7 4 2080 −10.4029 −10.2447
Shekel m = 10 4 2046 −10.5364 −10.5364
Expon. 2 431 −1.0000 −1.0000
Expon. 4 937 −1.0000 −1.0000
Cos-mix. 2 531 −0.2000 −0.2000
Cos-mix. 4 1160 −0.4000 −0.4000
Hartman 3 704 −3.8628 −3.8628
Hartman 6 1642 −3.3224 −3.3224
5n loc-min 2 615 0.329D-13 0.228D-12
5n loc-min 5 1398 0.114D-13 0.106D-12
5n loc-min 10 2447 0.462D-14 0.551D-13
5n loc-min 15 4350 0.345D-14 0.233D-13
5n loc-min 20 6623 0.242D-14 0.198D-13
5n loc-min 30 10537 0.143D-14 0.119D-13
5n loc-min 50 18643 0.105D-14 0.592D-14
5n loc-min 100 41161 0.513D-15 0.343D-14
10n loc-min 2 763 0.114D-12 0.730D-11
10n loc-min 5 1347 0.392D-13 0.182D-11
10n loc-min 10 2802 0.152D-13 0.479D-12
10n loc-min 15 5013 0.826D-14 0.415D-12
10n loc-min 20 7504 0.737D-14 0.0016
10n loc-min 30 12320 0.360D-14 0.176D-12
10n loc-min 50 21464 0.470D-14 0.742D-13
10n loc-min 100 47366 0.574D-15 0.374D-13
15n loc-min 2 676 0.234D-13 0.165D-12
15n loc-min 5 1460 0.568D-14 0.525D-12
15n loc-min 10 2656 0.241D-14 0.220D-03
15n loc-min 15 5053 0.513D-14 0.330D-03
15n loc-min 20 7800 0.159D-14 0.167D-12
15n loc-min 30 13098 0.191D-14 0.440D-03
15n loc-min 50 23072 0.347D-14 0.220D-03
15n loc-min 100 49998 0.897D-14 0.549D-03
Griewank 2 637 0.259D-14 0.0146
Griewank 5 1281 0.135D-13 0.886D-13
Griewank 10 3023 0.000D+00 0.898D-13
Griewank 15 5930 0.000D+00 0.761D-13
Griewank 20 9963 0.000D+00 0.603D-13
Griewank 30 15070 0.000D+00 0.649D-13
Griewank 50 28435 0.000D+00 0.621D-13
Griewank 100 62652 0.000D+00 0.709D-13

Table 2 reports the behavior of algorithm DDFSA on the same set of test prob-
lems used to compare DFSA and ACRS. The results are obtained by using m =
min{20, max{10, n}} as dimension of the working set W and stoppingAlgorithm DDFSA
when αstop < 10−6. The instructions of step 9 and Eq. (15) imply that this stopping con-
dition is eventually satisfied.
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Fig. 3. Comparison among DFSA, ACRS and DDFSA in terms of function evaluations

By comparing tables 1 and 2, it emerges that the distributed algorithm DDFSA out-
performs DFSA and ACRS in terms of function evaluations but retains a high accuracy
of the solution as well. This superiority is clearly pointed out by Figure 3 which sum-
marizes the behavior of the three algorithms on the test problems by reporting the total
number of function evaluations needed to solve problems with the same dimension.
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4. Numerical results

As a first attempt, we have tried to solve the optimal design problem by using a local
minimization algorithm. In particular, we have used procedure DFA setting αtol = 10−6

and taking ten different starting points randomly chosen on the feasible set. We have
obtained ten different local minimizers, where the worst local minimum point is

x1 = 27.91mm x4 = 181.85mm

x2 = 87.20mm x5 = 235.67mm

x3 = 138.85mm x6 = 296.87mm

x7 = 20.53◦ x9 = 60.58◦

x8 = 38.62◦ x10 = 83.57◦

x11 = 20.00mm x13 = −10.00mm

x12 = 20.00mm x14 = −10.00mm

which has an objective function value of 3.32 · 10−6 and corresponds to a uniformity
of 102 ppm for the z component, 30 ppm for the x component and 55 ppm for the y

component. The best local minimum is

x1 = 25.01mm x4 = 174.64mm

x2 = 72.23mm x5 = 228.75mm

x3 = 123.52mm x6 = 298.08mm

x7 = 18.72◦ x9 = 54.40◦

x8 = 36.71◦ x10 = 77.82◦

x11 = −10.00mm x13 = 5.53mm

x12 = 20.00mm x14 = 5.31mm

which has an objective function value of 2.51 · 10−7 and corresponds to a uniformity of
28 ppm for the z component and 12 ppm for the x and y components.

The above results clearly show the need of using a global strategy to get a design
with the best uniformity. To this end we have employed algorithm DDFSA (where the
values of the constants are the same as stated in Section 3). DDFSA, after 19408 function
evaluations, produced a point with a function value of 1.095 ·10−7 which corresponds to
a uniformity of 17 ppm for the z component, 10 ppm for the x component and 9 ppm for
the y component of the magnetic field within the uniformity region. Since the precision
obtainable by the manufacturing process is 1/100 mm and 1/1000 deg., we report the
solution point appropriately rounded:

x1 = 28.97mm x4 = 197.80mm

x2 = 88.79mm x5 = 243.98mm

x3 = 142.95mm x6 = 299.97mm

x7 = 19.165◦ x9 = 56.069◦

x8 = 37.869◦ x10 = 81.225◦

x11 = 13.02mm x13 = 1.45mm

x12 = −3.79mm x14 = −8.90mm.
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Fig. 4. Optimal design

The rounded point has an objective function value of 1.141 · 10−7 which corresponds
to a uniformity of 18 ppm for the z component, 11 ppm for the x component and 9 ppm
for the y component of the magnetic field within the uniformity region.

The z component of the magnetic field has an average value of B̄z = 743.5 Gauss.
In Figure 4 we report the optimal structure as determined by the optimization procedure.

The global optimization algorithm allowed us to obtain a satisfactory field uniformity.
We recall that existing low-field small MR magnets present 50 ppm of field uniformity.
To have an idea of the achieved improvement in the field uniformity level, we plot the
field behavior on the YZ-plane. Figure 5 corresponds to the optimal structure detected
by DDFSA, whereas Figure 6, corresponds to the best local minimum found by DFA,
which, as already said, has a field uniformity of approximately 28 ppm.
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Fig. 5. Optimal configuration uniformity

Fig. 6. 28 ppm configuration
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In conclusion, we can say that Algorithm DDFSA performed well on this practical
problem both in terms of number of function evaluations and in terms of the attained
quality of the solution. However, we believe that further improvements are possible.
In particular the following aspects of the proposed solution technique deserve a better
understanding and consideration:

- a closer examination of different global searches and their combination with the
derivative free local engine;

- an improvement of the local search phase aimed to decreasing the number of function
evaluations;

- the definition of algorithms which can handle both continuous and integer variables.
In the Magnetic Resonance problem, it would be interesting to consider as variables
the number of magnets as well as the number of rings.

The above points are subject of continuing work.

Acknowledgements. The authors would like to thank two anonymous referee and the guest editor for their
helpful comments, suggestions and corrections which greatly contributed in improving the paper.

5. Appendix

In this section, for the sake of completeness, we report the analytical expression of
constraints gh(x), h = 10, . . . , 49 of Problem (M).

Let (r, h) = (21, 30), (ā, b̄) = (204, 148) and S = {(ā, b̄), (ā − xi, b̄ − xi), i =
11, . . . , 14}. For every pair (a, b) ∈ S and every i = 7, . . . , 10, let

cY,i = ti cos xi cZ,i = ti sin xi,

with ti = ab√
(b cos xi)2 + (a sin xi)2

, be the coordinates (in the first quadrant) of the

intersection point between an ellipse with a and b semiaxes and a line with slope tg xi

(as shown in figure 7). By simple geometric reasoning, we can compute the following
quantities:

αi = arctg

(
b2

a2 tg xi

)

c◦
Y,i = cY,i + h sin αi c◦

Z,i = cZ,i + h cos αi

v
(1)
Y,i = cY,i + r cos αi v

(1)
Z,i = cZ,i − r sin αi

v
(4)
Y,i = cY,i − r cos αi v

(4)
Z,i = cZ,i + r sin αi,

where, in particular, points (v
(j)
Y,i , v

(j)
Z,i) for j = 1, 2, 3, 4 are the corners of the orthogonal

projection of the i-th magnet onto the YZ-plane, that is a plane parallel to the cylinder
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Fig. 7.

basis. These points are crucial since, as it is readily seen, two consecutive magnets do
not overlap on each other if and only if their projections do not. Then, for every choice
of (a, b) ∈ S, we get the following non convex constraints:

v
(4)
Z,i − v

(1)
Z,i−1 − (v

(4)
Y,i − v

(1)
Y,i−1)ctgαi−1 < 0, (17)

[
v

(4)
Z,i − v

(1)
Z,i − ctgαi−1(v

(4)
Y,i − v

(1)
Y,i )

]2

1 + ctgα2
i−1

− (0.5)2 > 0, (18)

for i = 8, 9, 10 and

v
(4)
Y,7 − r > 0, (19)

v
(1)
Z,10 > 0. (20)

In particular, constraints (17) guarantee that the i-th magnet lies completely on
the right of the (i − 1)-th magnet. This task is accomplished by assuring that point
(v

(4)
Y,i , v

(4)
Z,i) lies below the line passing through point (v(1)

Y,i−1, v
(1)
Z,i−1) with angular coeffi-

cient ctgαi−1. The second set of constraints, that is constraints (18), ensure that pairs of
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consecutive magnets be strictly more than 0.5 millimeters apart from each other. Indeed,
inequality (18) ensures that the distance between point (v

(4)
Y,i , v

(4)
Z,i) and the line passing

through point (v
(1)
Y,i−1, v

(1)
Z,i−1) with angular coefficient ctgαi−1 is greater than 0.5mm.

Finally, constraints (19) and (20) guarantee that the first and the last magnet do not touch,
respectively, the central one and the upper most magnet in the symmetric part of the ring.

In the end, we come up with a group of eight constraints (17)-(20) for every pair
(a, b) ∈ S, that is forty constraints which constitute gh(x), for all h = 10, . . . , 49.
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7. Czyzyk, J., Mesnier, M., Moré, J.: The neos server. IEEE J. Comput. Sci. Engin. 5, 68–75 (1998)
8. Daidone,A., Parasiliti, F., Villani, M., Lucidi, S.:A new method for the design optimization of three-phase

induction motors. IEEE Trans. Magnetics 34, 2932–2935 (1998)
9. Dolan, E.: The neos server 4.0 administrative guide. Tech. Memorandum ANL/MCS-TM-250, Mathe-

matics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA, 2001
10. Elleaume, P., Chubar, O., Chavanne, J.: Computing 3d magnetic field from insertion devices. In: Pro-

ceeding of the PAC97 Conference May, 1997, pp. 3509–3511
11. Fourer, R., Gay, D., Kernighan, B.: AMPL a modeling language for mathematical programming. Boyd &

Fraser publishing company, Massachusetts, 1993
12. Garcia, I., Ortigosa, P.M., Casado, L.G., Herman, G.T., Matej, S.: Multidimensional optimization in

image reconstruction from projections. In: Developments in Global Optimization, I. M. Bomze, T. Csen-
des, R. Horst, and P. Pardalos, (eds.), Kluwer, Dordrecht, 1997, pp. 289–300

13. Garcı́a-Palomares, U.M., Rodrı́guez, J.F.: New Sequential and Parallel Derivative-Free Algorithms for
Unconstrained Minimization. SIAM J. Optim. 13, 79–96 (2002)

14. Grippo, L., Lampariello, F., Lucidi, S., Sciandrone, M.: Global convergence and stabilization of uncon-
strained minimization methodswithout derivatives. J. Optim. Theory Appl. 56, 385–406 (1988)

15. Gropp, W., Moré, J.: Optimization environments and the neos server. In: Approximation Theory and
Optimization, M. Buhmann and A. Iserles, (eds.), Cambridge University Press, 1997, pp. 167–182

16. Haacke, E.M., Brown, R.W., Thompson, M.R., Vankatesan, R.: Magnetic Resonance Imaging: Physical
Principles and Sequence Design. John Wiley and Sons, New York, 1999

17. Hendrix, E., Ortigosa, P., Garcia, I.: On success rates for controlled random search. J. Global Optim. 21,
239–263 (2001)

18. Liang, Z., Lauterbur, P.C.: Principles of Magnetic Resonance Imaging: A Signal Processing Approach.
IEEE Press, 2000

19. Liuzzi, G., Lucidi, S., Placidi, G., Sotgiu, A.: A magnetic resonance device designed via global optimi-
zation techniques. TR 09-02, Department of Computer and System Sciences “A. Ruberti”, University of
Rome “La Sapienza”, Rome, Italy, 2002

20. Lucidi, S., Piccioni, M.: Random tunneling by means of acceptance-rejection sampling for global opti-
mization. J. Optim. Theory Appl. 62, 255–279 (1989)

21. Lucidi, S., Sciandrone, M.: On the global convergence of derivative free methods for unconstrained
optimization. SIAM J. Optim. 13, 97–116 (2002)

22. Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput.
Optim. Appl. 21 (2), 119–142 (2002)

23. Nishimura, D.G.: Magnetic Resonance Imaging. MRSRL Press
24. Price, W.L.: Global optimization algorithms for a CAD workstation. J. Optim. Theory Appl. 55, 133–146

(1983)



364 G. Liuzzi et al.: A magnetic resonance device designed via global optimization techniques

25. Price, W.L., Woodhams, F.: Optimising accelerator for CAD workstations. IEEE Proc. 135, 214–221
(1988)

26. Solis, F.J.-B., Wets, R.J.: Minimization by random search techniques. Math. Oper. Res. 6, 19–30 (1981)
27. Wolfram Research Inc.: Mathematica, http://www.wolfram.com/, 2003


