Innovative Optimization Software for Electric Motor Design

Gianni Di Pillo

ACTOR SRL Spinoff of Sapienza University of Rome , Italy

Coiltech 2018 - World Magnetic Conference (WMC) Pordenone, September 26-27, 2018

G. Di Pillo (ACTOR SRL)

Innovative Optimization Software

< □ > < 同 > < 回 > < 回

Joint work with

- Andrea Credo University of L'Aquila, Italy
- Stefano Lucidi
 Sapienza University of Rome, Italy
- Marco Villani University of L'Aquila, Italy

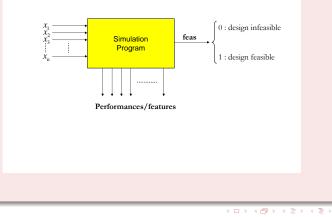
< 4 P ►

Outline

- In this talk we describe an approach to the optimal design of electric motors, based on an innovative optimization software
- The innovations rely on:
 - considering the design variables as discrete rather than continuous
 - considering the optimization problem as bi-level rather that single-level
- We claim that the optimization software described in this talk is by far the most advanced tool for the optimal design of electric motors
- A friendly graphical user interface (GUI) enriches the optimization software, thus providing an interactive environment for the optimal design

< ロ > < 同 > < 回 > < 回 >

Outline


As examples we will consider:

- the design of a Synchronous Reluctance Motor for maximum electromagnetic torque
- the design of a Brushless Motor for minimum material cost
- Of course any other kind of electrical motor, for any other kind of objective function, can be designed by the optimization software

The black-box approach for optimal design

Simulation and Performance Evaluation

G. Di Pillo (ACTOR SRL)

Innovative Optimization Software

WMC 2018 5/37

The Synchronous Reluctance Motor has been used as test case to drive the developments of the optimization algorithm towards better performances

Problem Variables

- x(1) = outlet stator radius
- x(2) = Inner stator radius
- x(3) =slot heigth
- x(4) = position of the first barrier
- x(5) = position of the second barrier
- x(6) = position of the third barrier
- x(7) = position of the fourth barrier
- x(8) = the width of the first barrier
- x(9) = width of the second barrier
- x(10) = width of the third barrier
- x(11) = width of the fourth barrier
- x(12) = width of the fifth barrier
- x(13) =length stack
- x(14) = tooth width

Problem Constraints

$g_1(x) =$ maximum phase voltage - θ_1	$(\theta_1 = 360 V)$
---	----------------------

 $g_2(x) = \text{maximum current density} - \theta_2$ $(\theta_2 = 10A/(mm^2))$

 $g_3(x) = \theta_3$ - minimum electromagnetic torque $(\theta_3 = 200N \cdot m)$

Objective Function

$$f(x) =$$
 - electromagnetic torque

G. Di Pillo (ACTOR SRL)

The standard mathematical optimization problem

$$\begin{array}{ll} \min_{x} & f(x) \\ s.t. & g_{i}(x) \leq 0, \quad i = 1, \dots, m \\ & l \leq x \leq u \end{array}$$

• $x, l, u \in \mathbb{R}^n$

- f(x) and $g_i(x)$ are continuous functions
- values of f(x) and $g_i(x)$ obtained by simulation
- derivatives of f and g_i are not available

< ロ > < 同 > < 回 > < 回 >

(1)

Electric motor experts of University of L'Aquila solved this problem for the optimal design of the Synchronous Reluctance Motor using a standard derivative free optimization algorithm [Brachetti, Di Pillo, Lucidi, 1996]

They got

objective function $f(x^*) = -0.4257$

constraints violation $viol(x^*) = \sum_{i=1}^{3} \max\{0, g_i(x^*)\} = 1.48610^{-3}$

Our aim is to get improved results by exploiting a better understanding of the properties of the electrical motor design problem

G. Di Pillo (ACTOR SRL)

イロト 不得 トイヨト イヨト

Technological limits impose that all variables vary only in a discrete way

computed	$f(x^*) = -0.4257$	$viol(x^*) = 1.48610^{-3}$
actual	$f(\hat{x}) = -0.4286$	$viol(\hat{x}) = 1.42710^{-3}$

イロト イヨト イヨト イヨ

Discrete Variables Mathematical Optimization Problem

$$\begin{array}{ll} \min_{x} & f(x) \\ s.t. & g_{i}(x) \leq 0, \quad i = 1, \dots, m \\ & l \leq x \leq u, \\ & x \in \mathbb{Z}^{n}, \end{array}$$

The optimization algorithm DVBB-OptAlg by [Liuzzi, Lucidi, Rinaldi, 2018]

- uses function values only, no derivatives
- accounts for discrete variables

very hard requirements for optimization algorithms

(2)

- starting point $f(x^*) = -0.4257$ viol $(x^*) = 1.48610^{-3}$
- max number of function evaluations =500
- objective function $f(x^*) = -0.67670$ viol $(x^*) = 0.d0$
- max number of function evaluations =5000
- objective function $f(x^*) = -0.7050$ $viol(x^*) = 0.00$

The variables have different effects on the resulting design

• x(1), x(2), x(3) strongly affect the physics of the design

the variables x(4),...,x(14) must be adapted to the values of x(1), x(2), x(3)

G. Di Pillo (ACTOR SRL)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

$$f(x) = f(x_u, x_l)$$

 $g_i(x) = g_i(x_u, x_l), \qquad i = 1, ..., m.$

where
$$x_u \in \mathbb{R}^{n_u}, x_l \in \mathbb{R}^{n_l}, n = n_u + n_l$$

the sensitivities of f and g_i are very different with respect to x_u or x_l

G. Di Pillo (ACTOR SRL)

イロト イヨト イヨト イヨ

Bilevel optimization problem

where

$$\begin{split} \mathcal{S}(x_u) &= \arg\min_{x_l} \quad f(x_u, x_l) \\ & s.t. \quad g(x_u, x_l) \leq 0 \qquad \qquad (\text{Lower Level}(x_u)) \\ & l_l \leq x_l \leq u_l, \quad x_l \in \mathbb{Z}^{n_l} \end{split}$$

イロト イポト イヨト イヨト

Bilevel optimization algorithm

For the previuos bilevel optimization algorithm, it possible to define BDVBB-OptAlg by using:

DVBB-OptAlg for the Upper Problem

DVBB-OptAlg for the Lower Problem

A D b A A b

- 4 ∃ >

Single level algorithm DVBB-OptAlg

- max f.e. = 500 $f(x^*) = -0.6767$ viol $(x^*) = 0.00$
- max f.e. = 5000 $f(x^*) = -0.7050$ viol $(x^*) = 0.00$

Bilevel algorithm BDVBB-OptAlg

• max f.e. Upp.Prob.= 24, max f.e. Low.Prob. = 22 (total \approx 500)

 $f(x^*) = -0.7060$ $viol(x^*) = 0.00$

• max f.e. Upp.Prob.= 75, max f.e. Low.Prob. n =66 (total \approx 5000)

 $f(x^*) = -0.7100$ $viol(x^*) = 0.00$

The Optimization Environment

It is composed by 3 items:

- the optimization software
- the simulation software
- the graphical user interface

A D > A A P >

The Simulation Software

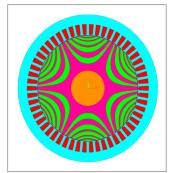
- At present the optimization software is interfaced with Ansys Mechanical APDL performing a finite element analysis
- In the future different software will be linked, like Ansys Electronic Desktop and Altair Flux

A D b A A b

GUI main features 1

- The GUI doesn't require more than one hour to start your first optimization
- By the GUI it is possible to see the preliminary design of the motor and change it
- All geometry variables are described with very simple image and a shortcut get all information for the users
- Possible user errors are highlighted and it is simple to correct them

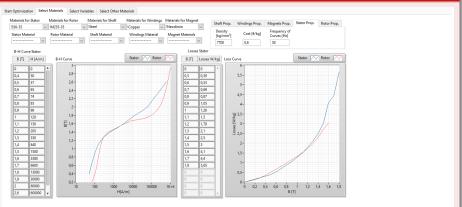
GUI main features 2


- It is possible to set motor parameters and requirements to get a preliminary design by an analytical procedure
- It is possible to choose materials from a default material library or create custom ones
- It is simple to choose the variables to be optimized from a list
- One can choose the objective function and the constraints from a pre-defined list

< □ > < □ > < □ > < □ >

View of the workbench

Start Optimization Select Materials Select Variables Select Other Materials



Four burner Starter Laft Barrier Ste Houmber of Polip pairs Ste Humber of Starter Stet Stet Ver 3 54 0,7 63 Usca an half Point Stet Rever (MV) Stet Seed (pm) Stet Cooling System Stet Voltage (V) Stet Aslig Angy, Application Number of Mainum Precesson Used Number of Mainum Precesson Used Inforcessor Stet Contraints Stafet Contraints: Stafet Objective Function Stet Opinization Algorithm Mainum Current Density Stafet Objective Function Stet Opinization Algorithm	Motor Selection						
Set Londraid: Set Number of Polip pairs Set Number of State Set Possible Prover Factor Set Possible Efficiency Ye Set Number of Number of State Set Q T Set Number of Number o	SynRel Motor						
Set Londraid: Set Number of Polip pairs Set Number of State Set Possible Prover Factor Set Possible Efficiency Ye Set Number of Number of State Set Q T Set Number of Number o							
Yet 3 54 0.7 9.3 Ube an Initial Prior 56 Bower (MI) 56 Scienting System 56 Winkley (M) 56 Scienting System Main on O 100 140 Caloring System 100 100 100 Analy Application Number of Mainman Processors Used Steed Constraints Set Optimization Algorithm Mainman Current Density Mainman Material Cetts Set Optimization Algorithm Mainman Current Density Mainman Material Cetts Set Optimization Algorithm Wather of mainman maximum Resolution for the first Iced 100 100 Wather of mainman maximum Resolution for the second Iced 11	Four barriers 🗸						
Use an Initial Point Set Power (VM) Set AviGap 100 300 Air Cooling System Set Voltage VM 100 Air Cooling System Set Voltage VM 101 Setect Constraints Setect Objective Function 101 Setect Constraints Setect Objective Function 101 Minimum Material Costs on Set Optimization Algorithm 101 Number of Instrumm Material Costs on Set Optimization Algorithm 101 Number of Instrumm Material Costs on Set Optimization Algorithm 101 Number of Instrumm Material Costs on Set Optimization Algorithm 101 Number of Instrumm Material Costs on Set Optimization Algorithm	Last Barrier	Set Number of P	ole pairs Set Num	iber of Stator Slot	Set Po	ssible Power Factor	Set Possible Efficiency
No 100 14600 Au Castel 20 360 65 Arcy Application Arcy Castel 1 Processor 2 and 1 Processor 2 and 2 an	Yes 🖂	3	54		0,7		0,9
Anys Application Anys Application Generative Constraints Select Constraints Select Constraints Select Constraints Select Constraints Mainman Grane Density (Armn*2) Number of mainum Reaction for the first level To Number of mainum Reaction for the second fevel To To Number of mainum Reaction for the second fevel To	Use an Initial Point	Set Power [kW]	Set Speed [rpm]	Set Cooling Syst	em	Set Voltage [V]	Set AirGap
	No 🗸	100	14000	Air Cooled	~	360	0,5
Maximum Current Density (A/mm*2) Eable Value Value 1 1							on Algorithm
Enable Number of maximum iteration for the first level 10 Number of maximum iteration for the second level 11 11	Maximum Current De	nsity 🗸	Minimu	im Material Costs	\sim	Two-Level	~
Value 11		isity [A/mm^2]	100				
				maximum iterati	on for ti	he second level	

Graphical User interface

Materials selection

イロン イロン イヨン イヨン

Design variables selection

rt Optimization Select Materials	Select Variables Select Other N	laterials			
Stator Variables	General Variables	Rotor Va	ariables		Min Value
Outer Stator Diameter	N. Conductor in Slot	XBarrVar1	R3 Downer Fillet	ANULTS.	0
Inner Stator Diameter	Steck Length	R1Var	R3 Upper Fillet		Max Value 0
Tooth Width	Current	Radial Ribs B1	XBarrVar4		Step
Slot Height	Eps Angle	R1 Downer Fillet	R4Var		
Opening Slot	Rotational Speed	R1 Upper Fillet	Radial Ribs B4		ON
Tooth Shoe Height	Airgap	XBarrVar2	R4 Downer Fillet		Set the Level
Tooth Inclination	Shaft Diameter	R2Var	R4 Upper Fillet		First Level 💌
Upper Stator Fillet	····)	Radial Ribs B2	XBarrVar5		
Downer Stator Fillet		R2 Downer Fillet		Outer Stator Diameter	Play Button
]		R2 Upper Fillet			<u></u>
		XBarrVar3			î
]		R3Var			
]		Radial Ribs B3		Ų	v [

▲ E ▶ E ∽ Q C
WMC 2018 25/37

• • • • • • • • • • • •

Optimal design of a Brushless Motor

The optimal design of brushless motor is now considered to show the GUI mode of operation. In particular:

- the GUI window displays all the best projects calculated from the initial one
- the design, all performances, flux density and the mechanical stress can be analyzed.
- it is possible to see the "evolution" of the design variables, of the objective function, and constraints violation while the optimization procedure progresses

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem Variables

- x(1) = inner stator radius
- x(2)= slot height
- x(3) = length stack
- x(4) = tooth width
- x(5) = current
- x(6) = position of the first barrier
- x(7) = position of the second barrier
- x(8) = position of the third barrier
- x(9) = position of the fourth barrier
- x(10) = the width of the first barrier
- x(11) = width of the second barrier
- x(12) = width of the third barrier
- x(13) = width of the fourth barrier
- x(14) = width of the fifth barrier

Problem Constraints

$$g_1(x) =$$
maximum phase voltage - θ_1 ($\theta_1 = 240V$)

 $g_2(x) =$ maximum current density - θ_2 $(\theta_2 = 7A/(mm^2))$

 $g_3(x) = \theta_3$ - minimum electromagnetic torque $(\theta_3 = 70N \cdot m)$

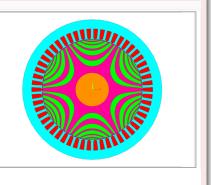
 $g_4(x) = \theta_4$ - maximum torque ripple ($\theta_4 = 25\%$)

Objective Function

$$f(x) = material cost$$

G. Di Pillo (ACTOR SRL)

イロト 不得 トイヨト イヨト



Preliminary design

Sta	art Optimization Se	lect Materials	Select Variab
	Stator Va	riables	
	Outer Stator Diamet	er 250	
	Inner Stator Diamete	tr 180	
	Tooth Width	4,5	
	Slot Height	17	
	Opening Slot	2	
	Tooth Shoe Height	0,8	
	Tooth Inclination	0,7	
	Upper Stator Fillet	0,01	
	Downer Stator Fille	0,01	

s	Select Other Materials				
	General Varia	bles			
	N. Conductor in Slot	2			
	Steck Length	200			
	Current	330			
	Eps Angle	84			
	Rotational Speed	14000			
	Airgap	0,5			
	Shaft Diameter	60			

Rotor Vari	ables
XBarrVar1	0
R1Var	0
Radial Ribs B1	0,5
R1 Downer Fillet	0,05
R1 Upper Fillet	0,05
XBarrVar2	0
R2Var	0
Radial Ribs B2	0,5
R2 Downer Fillet	0,05
R2 Upper Fillet	0,05
XBarrVar3	0
R3Var	0
Radial Ribs B3	0,5
R3 Downer Fillet	0,05
R3 Upper Fillet	0,05
XBarrVar4	0
R4Var	0
Radial Ribs B4	0,5
R4 Downer Fillet	0,05
R4 Upper Fillet	0,05
XBarrVar5	0

・ロト ・ 日 ・ ・ ヨ ト ・

-

Output: evolution of the optimized design

Perign Optimization Result
Price reading from 2 Price reading from 2

G. Di Pillo (ACTOR SRL)

Output: evolution of the flux density

Design Optimization Result
Construction Projection <

G. Di Pillo (ACTOR SRL)

Output: evolution of mechanical stress

Optimizing Market Page 73 Page 74 Page 74 Pag

G. Di Pillo (ACTOR SRL)

Output: trend of objective and constraint functions

G. Di Pillo (ACTOR SRL)

WMC 2018 33/37

• • • • • • • • • • • • • •

Design evolution

イロト イヨト イヨト イヨト

Initial and final designs

Example - SynRel 6pole, 54slots, 4barr

Parameters	Constraints	Initial Design	Final Optimized Design
Efficiency	> 97.0 %	97.6 %	97.78 %
Torque	> 72 Nm	166 Nm	71.42 Nm
Voltage	< 230	400 V	227 V
Ripple	< 25%	60 %	24.72 %
Mass	< 60kg	78.7 kg	54.8 kg
Current	< 350 A	330 A	325 A
Current Density	< 7 A/mm²	10.4 A/mm ²	6.99 A/mm ²

Material Cost Objective Function 79.6	0.9€
---------------------------------------	------

- 4 ∃ >

We have described an innovative software environment for the optimal design of electric motors, that takes account of the following features:

- discrete, rather than continuous, design variables
- possible bi-level, as well as single-level, optimization design
- friendly graphical user interface for interactive design

The design of a two electric motors have been considered as examples:

- a Synchronous Reluctance Motors for the analytic developments
- a Brushless Motor for the GUI presentation

Of course other classes of electrical motor design can be optimized

Further develoments of the optimization environment will concern:

- multi-objective optimal design
- robust optimal design

Many thanks for your attention !!!

G. Di Pillo (ACTOR SRL)

Innovative Optimization Software

2 WMC 2018 37/37

ъ

< ロ > < 回 > < 回 > < 回 > <</p>