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1 Abstract

Quality control of apparel items is mandatory in modern textile industry, as
consumer’s awareness and expectations about the highest possible standard is
constantly increasing in favor of sustainable and ethical textile products. Such
a level of quality is achieved by checking the product throughout its life cycle,
from raw materials to boxed stock. Checks may include color shading tests,
fasteners fatigue tests, fabric weigh tests, contamination tests, etc. This work
deals specifically with the automatic detection of contaminations given by small
parts in the finished product such as raw material like little stones and plastic
bits or materials from the construction process, like a whole needle or a clip.
Identification is performed by a two-level processing of X-ray images of the items:
in the first, a multi-threshold analysis recognizes the contaminations by gray
level and shape attributes; the second level consists of a deep learning classifier
that has been trained to distinguish between true positives and false positives.
The automatic detector was successfully deployed in an actual production plant,
since the results satisfy the technical specification of the process, namely a
number of false negatives smaller than 3% and a number of false positives smaller
than 15%.
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2 Introduction

Apparel manufacturing is the result of a number of cooperating activities over a
variety of different raw materials, product types, supply chains and production
lines, production volumes, retail markets, technologies. For a full customer’s
satisfaction, quality control must be practiced at any level, from the sourcing
raw materials to the boxed-garment. Indeed, textile products are assessed for
quality in the preproduction phase, during production, and with a final inspec-
tion after completion. Along a production line, product quality depends on
many attributes like the standard of fibers, yarns, fabric construction, colour
shade, surface designs, fasteners and other accessories reliability. This level of
quality control includes also the checking for contaminations, which is the focus
of this work. The finished product may satisfy the requirements according the
previously mentioned attributes, but may well show clues of all the production
activities: there may be found clips and needles stuck into the padding, needle
and button tips, little stones (pebbles), also construction parts like grommets or
zip pullers. Therefore, the task to be accomplished consists in detecting these
kinds of contaminations and to route the checked item to a controlling room
where the contamination will be removed.

Data are 8-bit gray level images obtained by X-ray scanners. In short, the
item image is segmented to separate different objects of interest from the back-
ground. Most of these objects are just artefacts produced by the scanner signal
quantization (8-bit), others are part of the item (buttons, zippers, drawstrings,
toggle-sliders, . . . ). Save for needles and clips, contaminations are usually ob-
jects of a very small size, very similar to scanner artefacts. Therefore, global
segmentation methods like region-growing methods [1, 2, 3], fail to isolate the
contamination. In fact, on a sample of about 590 X-ray images that constituted
the available training set, it turned out that the most reliable way to isolate
a contamination was to analyze the images binarized at different thresholds of
increasing magnitude. Moreover, a set of three morphological properties was
found suitable to adequately characterize the contaminations shape: area, so-
lidity and aspect ratio. Solidity is the ratio between an object area and the area
of its convex hull, while the aspect ratio was defined as the ratio between the
lengths of the major and minor axes of the object (referred to the ellipse that has
the same normalized second central moments as the object). These parameters
allow to distinguish the contamination from other detected objects. Further-
more, it was also found that the true contaminations have different behaviors
on increasing threshold segmentations than most of the false contaminations,
and this enables a further selection between real defects and false alarms.

The combination of these processes defines a multi-threshold filter (MT-
Filter) that is able to identify most of the contaminations in apparel items,
although with a non negligible number of false positives. A representative ex-
ample of such a false positive is shown in figure 1. The shape, dimension and
grey level of the folded drawstring in fig.1 (b) matches almost exactly those of
a real contamination, like the one in fig.1 (a). This is something that happens
frequently when applying the MT-Filter to an X-ray image of an apparel item
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(a) TP1 (b) drawstring (coulisse)

Figure 1: (a) image of a pebble; (b) image of a drawstring .

because the presence of seam lines as well as zip elements, broken stitching, tog-
gles etc. Therefore, a further functional level of the detection procedure must be
designed to lower the rate of the false positive detections. This is obtained by a
deep learning classifier trained to distinguish between the real contaminations
and the false positives. The classifier, once properly trained, is applied to the
detections provided by the MT-Filter and gives a quick response to distinguish
a true positive from a false alarm. The classifier has the structure of a Convo-
lutional Neural Network (CNN-Classifier). We like to stress that in the quality
control of textile products the procedures are obtained as an ad hoc adaptation
of existing methods, usually more than one, to the various case studies. As it
will be clear in the next Section of related works, many different technologies
can be applied to collect data for visual inspection, and well established algo-
rithms are employed mainly for texture analysis. The case study presented in
this work is original within the textile quality control since the goal consists
in checking the presence of small intrusions in a finite product by using X-ray
data.

The paper is organized as follows: in Section 2.1 we describe existing research
related to quality control of textile products. Section 3 introduces the dataset
at disposal, and describes the methods developed to perform contamination
detection with a low false positive rate. In Section 4 we present the experiments
and the results obtained by applying the proposed approach to the dataset at
disposal. Finally, in Section 5 some conclusions are given.

2.1 Related works

This section presents different case studies that occur in the quality control of
textile products and the different metodologies borrowed from image analysis
for visual data processing. It aims to offer a survey of possible applications of
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well established image analysis procedures to different problems arising in the
quality check in the apparel industry. Quality control is a crucial aspect in the
industrial production line. In [5] a recent review can be found, describing non
destructive approaches for quality assessment. These approaches avail of dif-
ferent technologies (radiography, eddy current, thermography, ultrasounds,...)
and the ones related to this work lie within the visual inspection framework.
In this context, most of the methods are developed to check surface defects by
texture analysis, that is the spatial distribution of pixel values in a recorded im-
age. An interesting method can be found in [6], where an Adaptive Generalized
Likelihood Ratio is used to detect defects by checking whether the distribution
of the observed data is significantly different from a baseline historical distribu-
tion in an adaptive manner. The co-occurrence matrices (GLCMs) are one of
the most well-known and commonly used texture features. They are statistical
methods that measure the spatial relationship of grey-scale pixels: the occur-
rence frequency of pairs of pixels with specific values and in a specified spatial
relationship in an image, given a displacement vector, is determined and then
texture features such as energy, entropy, contrast, homogeneity and correlation
are extracted. Application to textile quality control can be found in papers
[21, 22]. To achieve satisfactory results, GLCM methods need to be carefully
tuned according to the application considered; in paper [3] for instance, the au-
thors propose an GLCM based detector with a radial basis probabilistic neural
network to detect defects on fruits, and achieved 97.25% detection rate with
2.75% false alarm. A low computational cost method to describe local texture
properties is the Local binary pattern method (LBP). The image is scanned by
a sliding window, the center pixel grey level value is used as threshold and the
window pixel are binarized according to this threshold [20]. The LBP operator
is insensitive to changes in illumination and image rotation, and it makes it a
robust operator that has been used in several defect detector applications on
varied materials such as ceramics or wood. Anyway it has better performances
if combined with other methods: in [25] the authors combined the GLCM and
LBP methods to extract image features to train a neural network that achieved
97.6% detection rate on 90 samples from TILDA database; in [23], a modified
LBP method to train a SVM classifier is proposed, achieving 93% of accuracy
on a sample of 148,905 images.

Filter based approaches use signal filtering to determine the local frequency
characteristics of the texture to compare with originals to detect defects. The
most popular transformations are Gabor filtering [19] and Wavelet transform
[11]. These methods are usually computationally expensive, therefore their use
in real time application must be carefully considered.

Deep learning is a fast growing field in computer sciences, because it can
solve highly complex problems [26]. Deep learning transforms data into complex
representations that enable the features to be learned overcoming the require-
ment of complex features for a specific defect, typical of the so called traditional
methods above reported. Deep learning is a data-driven artificial intelligence
techniques able to successfully model deterministic rules, which are often incom-
prehensible to humans, and relationships between input and output, [24, 10, 18].
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As a general remark, we can say that a huge number of methods is avail-
able for quality control of industrial production, but the ultimate method does
not exist. Each method comes with pros and cons, and the level of the per-
formance mainly depends on the quantity and quality of data available to the
experimenter. Moreover, in most of the applications the detection needs to be
in real time. As a matter of fact, all the approaches reported above require that
there is an original flawless model from which the basic surface characteristics
can be learned. In the textile production this is realistic for the fabric from
the loom, but does not apply to finite products. In the application considered
in this paper an apparel item is just passed through the X-ray scanner and no
particular care is taken in positioning it in the scanner, so it can be folded in an
uncontrolled manner. In this situation, there is no a master picture of the item
to be compared to the X-ray data to check for differences of any kind. Moreover
the defects are just very small particles over large size images, with level and
shape very similar to the background artefacts similar to noise in X-ray data.
Therefore even machine learning methods do not guarantee good performances.
This case study indeed is different from those usually found in the relevant liter-
ature, and calls for a method with mixed properties: a filter subsystem isolates
the candidates for contaminations and a machine learning classifier distinguishes
among these candidates the true defects from the false alarms.

3 Materials and methods

In this section the dataset and the identification procedure are described. The
identification procedure is composed of two processes that cooperate to obtain
a robust and efficient detection of contaminations in an apparel item, see Figure
2. Robustness refers to a high rate of true positives and a low rate of false
alarms, while efficiency is needed for a real time detection. The contaminations
(intrusions) are indeed small size objects to be classified either as defects of the
apparel item as compared to other objects that are parts of the item (zip, puller,
buttons, drawstring) or to artefacts generated by the X-ray scanner. It is quite
inefficient to feed the classifier with the whole X-ray image of the item since, due
to its large size, it would result in a complex system (high number of parameters)
very difficult to train to distinguish large size images that differ because of
very small size subsets of pixels. Complexity could be reduced by a sliding
window system that inputs the classifier with reduced size sub-images obtained
by sliding a window over the whole image domain, but the resulting process
would be time consuming and would yield to a considerably high number of False
Positives. Therefore an upstream process is needed to select a finite number of
instances to pass to the classifier. This is accomplished by a multi-threshold
filter that efficiently segments the original image into component objects, filters
out the objects by gray level, shape and density selection, and determines a
small number of pixel subsets that are candidates to be a true contamination.
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Figure 2: Scheme of the contaminations detection process

3.1 The dataset

The dataset used in this work is property of a private international company
working in the apparel industry. We had two different groups of images, one
used for the MT-Filter and the other for the CNN-Classifier.

• For the filter there were 11598 images with dimensions 4080 x 1664 pixels.
Because of privacy reasons, we are not allowed to show images as a whole,
but only some of their details. In these sub-images, components such as
zip-pullers, buttons and toggles-sliders appear as dark objects. Seams,
drawstrings, zip-teeth have and intermediate gray tone, very similar to
artefacts produced by the item creases. Figure 3(a) shows an image detail
where a needle bit contamination is present. It appears as a quite dark
object of small size. In Figure 3 (b) a pebble contamination is displayed,
it has a quite light gray level and very small area (it can be as small as 5
pixels).

(a) label 1 (b) label 2

Figure 3: This figure shows two typical contaminations: (a) needle bit; (b)
pebble.

Of these images, 590 were used to tune the parameters of the filter, while
the rest were part of the test set, as described in section 4.1.
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• For the classifier there were 10123 images with dimensions 120 x 120 pixels,
obtained as crops of the original image around either a contamination,
from here on referred to as True Contamination (or TC), or around an
actual part of the item, from here on referred to as False Contamination
(or FC). In particular, 4988 were images of TC and 5135 were images of
FC. An example of a TC and a FC image is represented in Figure 1.

3.2 The MT-Filter

The task consists in detecting all kinds of contamination within given ranges of
gray level and of some parameters defining the shape. To this aim, let us define
a set of gray level threshold values as follows

thk = k
255

24
= kδ, k = 0, . . . , 23.

Then, for any 0 ≤ k ≤ 23 a binary image Ik is obtained according the following
rule

Ik(i, j) =

{
1, I(i, j) < thk,

0, otherwise
(1)

Pixels whose gray level is within the range [0, thk) are labeled as white, all the
others are labeled as black. Let us choose for instance k = 7 and apply rule (1)
to both Figure 3(a) and 3(b).

(a) (b)

Figure 4: Image binarized by th7: (a) binarization of Figure 3(a); (b) binariza-
tion of Figure 3(b).

The needle bit of Fig.3(a) is clearly detected on Fig.4(a) along with the two
large buttons, and can be addressed by “filtering” the white objects by size
and shape. On the contrary the pebble of Fig.3(b) is not detected on Fig.4(b),
since it has a gray level higher than th7. Now let us choose a threshold k = 16,
suitable to detect the light gray pebble and apply it to both image details
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3(a),(b) and see what happens. This time a different problem arises. Figure
5(a) is filled with false detections while on Figure 5(b) the pebble is clearly
demarcated but it is within a cloud of artefacts, even though more sparse as
compared to those on Fig. 5(a). These artefacts can be got rid off by matched
dilation/erosion morphological operations and by density filtering: the average
distance of a contamination by neighbouring objects is larger as compared to
that of artefacts within a cloud.

(a) (b)

Figure 5: Image binarized by th16: (a) binarization of Fig.3(a); (b) binarization
of Fig.3(b).

It is clear that a single threshold can not suit all kind of contamination.
Therefore, a proper set of thresholds [tkl , . . . , tku ] must be chosen to detect
the contaminations at various gray levels, that are typical of the given textile
production .

The following steps outline the detection procedure of the contaminations.

1. set k = kl

2. Binarize by threshold thk, according to (1)

3. For any white object compute the following quantities

i. Area, defined as the number of pixels in the object

ii. Ratio between the major axis and minor axis lengths (axes of the
object ellissoid)

iii. Solidity, the ratio between the area and the area of the object convex
hull

iv. Centroid coordinates.

4. Filter out objects whose shape parameters Area, Ratio and Solidity are
not within given confidence intervals and find the set O of possible con-
taminations by also
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− remove artefacts by matched dilation/erosion morphological opera-
tions

− filter out objects whose average distance by neighbouring items is
below a given threshold value d0.

5. For any element p ∈ O, select a neighborhood of I around the element
centroid and binarize this subimage by the thresholds thk + δ. The size of
every element increases since other pixels may join its pixels set.

6. Distinguish a true contamination from a false detection: for any element
in O check the increase in area and major axis length of the corresponding
object within the subimage binarized at the extended range thk + δ. If
the increase rates of area and major axis length are below given upper
bounds, then the element is labeled as a contamination.

7. set k = k + 1; if k < ku go to step 2

Steps 1) to 7) define a selective procedure to segment objects at different gray
level values; it detects contaminations by shape filtering (step 4)) and a shape
stability check over increasing threshold (step 6)). There is a number of param-
eters that need to be calibrated to obtain good performances

- the set of thresholds [tkl , . . . , tku ]

- the confidence intervals for the shape parameters; they are obtained as
µp+2σp with µp the sample average and σp the sample standard deviation

- the size of the structuring elements for the morphological operations

- the threshold values for the density filtering

- the increase rate for area and major axis length in checking for false de-
tection

All these quantities can be obtained by a supervised calibration on the avail-
able training set of X-ray images of a given textile production. Let us show how
the detection procedure works on figure 3(b). Panel (b) of Figure (6) shows the
binarized image according to procedure (1) with threshold th16, due to the light
gray level of the pebble to be identified. The pebble object is surroundend by
a cloud of artefacts due to the background and other structures in X-ray image
of the apparel item. Many of these can be eliminated by dilation/erosion: in
panel (c), the artefacts that were very close one to another have been aggre-
gated into a larger area object that can easily eliminated by shape filtering, as
can be seen on panel (d), where only two objects survived. In this particular
example the two objects detected were quite distant so that the density check
did not modify the result. Finally checking the stability of the values (variation
within given ranges) of the shape parameters on the same object detected at
the increased threshold th16 + δ allowed to identify the true contamination on
panel (f), and eliminate the false alarm due to the artefact. Nevertheless, the
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MT-Filter may well generate false positives as shown in Figure (7): the true
positive is detected (the leftmost red circle) along with two false alarms due to
the strawstring knots, that passed all the filter checks. Therefore a classifier is
required to distinguish true contaminations from artefacts.

The shape description of the possible contamination could be in principle
enriched to lower the false positive rate of the procedure, but it would imply an
increase in the computational burden. It must be taken into account that the
detection system must operate in nearly real time, and therefore no more than
few second (typically 5 sec) are allowed, on quite large size images.

3.3 Deep Convolutional Neural Networks - fundamentals

As mentioned in section 2, the second part of the contamination detector consists
of a deep learning classifier trained to distinguish between real contaminations
and the false positives. The classifier is applied to the detections that are the
outcome of the MT-Filter, and is based on a Convolutional Neural Network.
Like other types of neural networks, deep convolutional neural networks (CNN)
have a layer-wise design, as shown in the example of Fig.8. CNN are composed
of several modules, each consisting of three different layers:

• convolutional layer

• nonlinear layer,

• pooling layer

The sequence of these layers is repeated several times leading to a multi-
layer structure with very large number of layers. The last part of CNN is a
conventional multi-layer feed-forward neural network with additional dropout
between its layers.

In the next subsection we briefly describe each of the components of a CNN.
For more details we recommend [9, 16].

3.3.1 Convolutional layer.

The goal of the convolutional layer is that of extracting different sort of features
from the input image. The initial layers select low level features, such as edges,
shapes or colours, while the following layers are responsible for the detection of
higher level features. The output of each convolutional layer consists of several
feature maps, their number corresponding to the number of filters in that layer.
Each filter, responsible for the detection of a different feature, is a simple array
of weights, whose value is adjusted and learnt during the training. The number
and size of filters in each layer is an hyperparameter that is chosen in advance
by the user.

10



(a) (b)

(c) (d)

(e) (f)

Figure 6: The various steps of the MT-Filter: (a) the original image of Fig.3(b);
(b) the binarized image with th16; (c) the morphological processing erases some
artefacts and aggregates others; (d) the shape filtering selects only the objects
of panel (c) that have the shape parameters values within given intervals (this
time the density check was ineffective); (e) the two objects encircled on the
original picture; (f) the pebble is the detected through the check at the increased
threshold value
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Figure 7: False positives generated by the MT-Filter.

Figure 8: Basic deep convolutional network architecture

3.3.2 Nonlinear layer.

Each convolutional layer is followed by a nonlinear layer. This improves the
approximation abilities of the network. Among several nonlinear transforma-
tions that can be used, the most common is the rectified linear unit (ReLU),
that ensures faster training when used in deep convolutional networks [14], ba-
sically because it mitigates the well known vanishing gradient effect during the
back-propagation training in neural networks [8].

3.3.3 Pooling layer

The combination of convolutional and nonlinear layer is often followed by a
pooling layer. Its job is that of reducing the size of the feature maps, in order
to decrease the computational power required to process the data and to make
the representation rotational and positional invariant with respect to the input
[15]. Average pooling and Max pooling are two different types of pooling layer,
the latter being adopted more frequently than the former. In both cases there
are no weights that need to be learnt during the training phase.
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3.3.4 Dropout layer

To overcome overfitting thus improving the generalization abilities of the net-
work, a regularization technique known as Dropout is employed in this layer
[12]. This technique consists in randomly removing some connections during
the training, with a probability determined by the dropout rate, another hyper-
parameter chosen in advance by the user. Dropout layers are normally removed
after the training.

3.3.5 Fully connected layer

After several stages of convolutional and pooling layer, the feature extracted
are fed to one or more fully connected layers. The last of them is then followed
by a sigmoid neuron in the case of binary classification or by a softmax layer in
multiclass classification.

3.3.6 Training Procedure

In this subsection we outline the set up procedure for the Convolutional Neural
Network employed to reduce false positives. It can be described as the successive
application of the following operations:

1. the preparation of the data set, needed to reduce biases in the distribution
of input data, i.e. the creation of a training, validation and test data sets,
and the data augmentation procedure described in subsection 3.3.7;

2. the choice of the metrics to evaluate the performance on the validation
and test sets;

3. the definition of the architecture of the network, i.e. the number of layers
of each type (convolution, max-pooling, fully connected) and the neurons
number/ kernel sizes of each layer;

4. the identification of the parameters for the training procedure, i.e. the
loss function to minimize, the optimization algorithm and its parameters
(learning rate, momentum).

We report a brief summary, in form of a pseudo-algorithm, of the whole
procedure. The pseudo-algorithm will include the cross-validation procedure
to choose the values of four hypothetical hyper-parameters a, b, c, d: the next
subsections will introduce and explain all the parameters that needed to be
chosen for the actual experiments.

1. Given the set N of the available images, randomly select a test set Te
of size 20% of the original data set N , defining with Tr the set of the
remaining 80% of images.

2. Divide the set Tr of images into K folds: T 1
r , T

2
r , . . . , T

K
r .

3. Select a range of possible values for each of the hyper-parameters a, b, c, d;
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4. For l iterations:

(a) Randomly select one value for each hyper-parameter;

(b) For k = 1 . . . K:

i. select T kr as validation set, and consider the union of the other
T pr , p 6= k folds as training set.

ii. Apply data augmentation techniques on the training set, and
train the CNN using the hyper-parameters selected at step 4a.

iii. test the CNN on the validation set T kr and store the evaluation
metrics in a list.

(c) Compute the average of the evaluation metrics of the K different
validation sets, and store them in a table.

5. Pick the combination of hyper-parameters that yields the highest average
evaluation metric.

6. Train the CNN using such combination of hyper-parameters on the whole
set N of images and evaluate the performances on the test set Te.

In the following subsections we explain the details of some of the steps of
this pseudo-algorithm.

3.3.7 Data set preparation

To choose the right configuration of the hyper-parameters we implemented a
random search with a K-fold cross-validation procedure, with K = 5, that works
as follows: the training set Tr is divided into K folds. We run k = 1, . . . ,K
iterations, at each of which we use K−1 folds as the training set, and the k− th
one as the validation set.

During the training phase data augmentation techniques are used to increase
the size of the dataset, therefore increasing the robustness and improving the
quality of the classifier. These techniques can be summarized as the attempt
to create new data entries from existing ones by rotating, shifting, zooming in,
zooming out original images, in order to generate additional artificial images
and consequently prevent overfitting. At each iteration, we created some new
images for each image in the training set, leaving the validation set with the
original number of images.
We then train the network with a given configuration of the hyper-parameters
and we compute several metrics such as accuracy, precision, recall and Fβ score
(see below) on the validation set. After the last iteration we compute the average
of the metrics on the K different validation sets, and we store them in a table.

3.3.8 Evaluation metrics

As the main performance metric we chose the well known Fβ score. This score is
an extension of the F-score or F-measure, a metric that takes into account both
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the precision and recall of a test’s accuracy. Fβ is often used when the balance
between precision and recall must be controlled and one wants to weigh more one
than the other [1]. To describe the way it is computed, we first need to introduce
the concepts of True Positive (TP), False Positive (FP) and False Negative (FN).
We define as TP the contamination in the image that is successfully detected
by the classifier. If the algorithm identifies a contamination that is not in the
image, we define it as a FP. Finally, FN describes a contamination that is in the
image but is not detected by the algorithm.

We can now show the formula to compute the Fβ score:

Fβ = (1 + β2)
precision · recall

(β2 · precision) + recall

where formulae for precision and recall can be found in equations (2) and (3),
respectively.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

The highest possible value of Fβ is 1, while the worst is 0. In the experiments, we
set β = 2, since it was important for the application described in the previous
sections to reduce false positives, but without sensibly impacting the perfor-
mance on the false negatives. The choice of such value was ultimately driven
by the request of weighting recall higher than precision.

We conclude this section by outlining some limitations of the proposed pro-
cedure. At filter level, not all the kinds of objects that can contaminate an
apparel item are detected. For example, objects of small size with a very light
grey level do resemble the X-ray scanner artefacts on the image background ,
and therefore trying to detect these objects would give rise to a very large num-
ber of instances to pass to the classifier and a consequent unacceptable increase
of the false positive rate and computation time. This limits the upper value tku
that can be chosen for the multi-threshold segmentation. Another limitation
is that some contaminations are difficult to describe with a limited number of
shape parameters, like a piece of plastic string which can appear folded and
knotted in an unpredictable way. At classifier level there may be a lack of a suf-
ficient number of training examples to learn particular type of contaminations
that occur rarely, like a needle that is occluded, for example, by a button, zip
puller, or another item accessory.

4 Experiments and results

In this section the MT-Filter and the CNN-Classifier procedures are applied
to the considered case study. Subsection 4.1 describes the procedure used to
tune the parameters of the MT-Filter and shows its initial performance; sub-
section 4.2 describes the hyper-parameters involved in the training of the CNN-
Classifier, and presents the metrics on the test set; finally, subsection 4.3 shows
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the results obtained by the combination of the filter system and the classifier,
highlighting the differences from the results obtained by the only application of
the filter.

4.1 MT-Filter

The filter subsystem is calibrated on a set of 590 X-ray images (a ground-
truth data set representative of the reference textile production) that have been
checked by expert personnel: on these images the various contaminations, when
present, are labeled (needle, clip, plastic bit, pebble, etc.) and their coordinates
are also provided. Therefore, a supervised detection procedure was first adopted
on the ground-truth data set to isolate the contaminations of various kind and
define their range of gray level values along with the confidence intervals for
their shape parameters. Out of this first analysis, the range [tkl , . . . , tku ] for
the multi- threshold procedure outlined in section 4.2 and the key information
needed for the shape filtering of the detected objects at step 4) of the same
procedure, are obtained. Then, steps from 1) through 7) are repeatedly applied
by a trial-error procedure for the tuning of the parameters that characterize
the data transformations building-up each step of the detection procedure: the
shape and size of the structuring elements for the morphological operations, the
threshold values for the density filtering, the increase factor for area and major
axis length to avoid false detections.

The tuning procedure showed that it is possible to detect all kinds of in-
trusions, bringing the number of false negatives to zero. Nevertheless, some
pebbles may occur at a very light gray level (higher threshold values) and with
very small size (about 5 pixels of area). They become therefore indistinguish-
able by a great deal of the background artefacts on the X-ray data. Having zero
false negatives would result in an unacceptable rate of false positives, so that a
suitable trade-off must be found between the two contrasting goals.

The procedure tuned in the way described above was tested on a set of 11008
images, 113 of which had some contaminations and 10896 that were contami-
nations free. The resulting confusion matrix is the following:[

4507 (TN) 6388 (FP )
2 (FN) 111 (TP )

]
We can see that to obtain such a low false negative rate (1.77%), the number
of false positives produced is elevated, the rate being around 58%.

As the filter could not be improved to lower the false positive rate, this task
is demanded to the classifier.

4.2 CNN-Classifier

In this subsection we describe the hyper-parameters involved in the training of
the CNN-Classifier and the way they have been tuned. We analyze the role
played by the class weights and show how its values affect the various metrics
on the validation sets. Finally, we present its performance on the test set.
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4.2.1 Network architecture and training parameters

Defining the correct architecture of a deep (convolutional) neural network is not
a simple task. Indeed, a trade-off between training complexity and predictive
capability must often be found. Indeed, increasing the number of layers and
neurons per layer brings, theoretically, more predictive power, but also makes
the training much longer and harder, therefore potentially hindering the final
aim that is to find the best configuration in terms of predictive power.

The optimization algorithm that we chose is ADAM [13], well-known for deep
learning training. ADAM’s main parameters are the learning rate (α, aka as the
step size in the operations research community) and momentum µ. In general,
a smaller learning rate will increase stability of the optimization procedure, but
will make the training slower; the momentum parameter aims at speeding up
the optimization when a consistently descent direction in the minimization of
the loss function lf is found.

All the above mentioned parameters, both network architecture and opti-
mization algorithm ones, were chosen through a random search, where different
combinations of hyper-parameters are tried, for each of which we run the k-fold-
cross validation described in subsection 3.3.7.

In particular, we identified some suitable ranges of values for the following
hyperparameters:

• nc, nm, nf , the number of convolution, max-pooling and fully connected
layers, respectively;

• {N i
k}
nc
i=1, {N j

m}
nm
j=1, {Nh

f }
nf

h=1, the size of the kernel, of the max-pooling
matrix and the number of neurons of each convolution, max-pooling and
fully connected layer, respectively;

• α, µ, the learning rate and the momentum, since the optimization algo-
rithm of choice was the well-known ADAM algorithm.

• batch size

• number of epochs

• class weights

The first hyper-parameters are ordinary and are the subject of choice of
most machine learning applications. The last of them, the class weights, is less
common, and is normally used for dealing with unbalanced classes, along with
other sampling techniques [4, 7, 2, 17]. In our application the data were almost
perfectly balanced, but we had the request of weighting the recall higher than
the precision, i.e. to ”pay more attention” to samples belonging to the TC
class. This is the why we introduced this hyper-parameters to weight instances
of the two classes differently when computing the loss function, in our case
the binary crossentropy. The parameter class weights has the form of a tuple,
where the first element represents the weight of each sample of the class FC
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(False Contamination) in the loss function, while the second element represents
the weight of each sample of the class TC (True Contamination) in the loss
function. For example, class weights = (1, 5) indicates that every instance of
the TC class weights 5 times more than each instance of the FC class in the
computation of the binary cross-entropy.

The random search produces a table that has one row for each combination
of hyper-parameters found, and one column for each metric. To choose the best
combination of hyper-parameters we look for the one that maximizes the main
evaluation metric, i.e the Fβ score as described in 3.3.8

4.2.2 CNN results

In the following table we report the average values on the k different validation
sets of the F2 score, F score, accuracy, precision, recall and the confusion ma-
trix for the best combination of hyper-parameters, as described in the previous
section. The value of each hyper-parameter is not reported, but we show how
the various metrics are sensible to the change of the parameter class weights.
In particular, each row of the table is referred to the best combination of hyper-
parameters, with the only exception of the parameter class weights that changes
assuming four different values.

The highest entry for every metric is highlighted in bold.

Table 1: Average Evaluation Metrics on k different validation sets

Class F2 score F score Accuracy Precision Recall Confusion
weights matrix

(1, 1) 0.944 0.929 0.928 0.904 0.955

[
740.6 81

36 762

]
(1, 2) 0.952 0.913 0.908 0.854 0.981

[
687.4 134.2
15.4 782.6

]
(1,5) 0.949 0.893 0.883 0.812 0.991

[
638.4 183.2

7 791

]
(1,10) 0.940 0.871 0.855 0.777 0.992

[
593.8 227.8
6.4 791.6

]

We can see that, as the weight associated to the TC label increases, the
number of False Negative decreases, along with an increase of the False Positives.
This consequently affects the values of the Precision, that decreases as we move
across the rows, and the Recall, that has the opposite behaviour.

Combination of weights (1,10) has the highest recall and seems to be the
one that better fulfills the request of ”paying attention” to the TC, i.e. to have
a low number of false negatives. At the same time, it is worth noticing that a
0.01 increment in the value of the recall for the combination of weights (1,10)
compared to the one of weights (1,2) comes with a price: a decrease of the
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precision of almost 0.08.
This suggests that there is a trade-off between these two metrics and that,

depending on the application, different choices can be made. For the application
mentioned in this paper, the combination of weights that maximizes the F2 score
is (1,2), that guarantees a sufficiently small number of False Positives while
keeping the number of False Negatives reasonably low.

In table 2 we report all the metrics obtained on the test set after training the
network on the whole training set with the aforementioned best combination of
hyper-parameters found.

Table 2: Evaluation Metrics on the test set

F2 score F score Accuracy Precision Recall Confusion
matrix

0.948 0.911 0.907 0.856 0.974

[
864 163
26 972

]

We can see from this table that the metrics on the test set are very similar to
the average of the ones on the different validation sets, thus suggesting that the
training procedure produced a model with a good generalization capability.

The experiments were performed on a computer with an Intel Core i7-8650U
processor with 1.90 GHz CPU and 16 GB of RAM, which ran on the Windows
64-bit operating system. The network has been implemented in Python 3.7,
using the Tensorflow/Keras framework.

4.3 MT-Filter and CNN-Classifier combined

In this section we report the results of the combination of the filter system and
the classifier on the test set of 11008 images of size 4080 x 1664 pixels.

The two parts of the proposed approach interact in the following way: each
image is passed as input to the MT-Filter, that returns either an empty list,
meaning that no potential contaminations have been detected, or a list with the
coordinates of potential contaminations.

In the latter case, the image is cropped around every point identified by the
coordinates, producing sub-images of size 120 x 120 pixels.

These sub-images are then processed by the CNN-Classifier whose response
labels the potential contamination either as a false positive, therefore discarded,
or as a true positive, therefore kept as an identified contamination.

The following confusion matrix shows the results obtained on the test set
mentioned before [

9288 (TN) 1607 (FP )
3 (FN) 110 (TP )

]
We can see that the CNN classifier successfully does its job, reducing the rate
of false positives from 58% to less than 15%. This reduction comes with a small
cost, the increase of the false negatives of a value of one.
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5 Conclusions

In the textile production the quality of the products is controlled in all the var-
ious steps of the process. This is in response to the increasing concern of the
consumers in favor of sustainability of the processes that transform raw goods
in apparel items. Besides attributes like the standard of fibers, yarns, fabric
construction, colour, shade, surface designs, fasteners and other accessories re-
liability, the finite product has to be free of intrusions, that are a clue of all
the various production activities. These contaminations have to be detected, so
that the item can be fixed before packaging is applied. Such a task is usually
accomplished on X-ray images by expert personnel, but the activity is prone
to mistakes, being highly repetitive and demanding from the attention point of
view.

In this paper an automatic procedure is developed to detect contaminations
in apparel items, passed in an X-ray scanner. The system is composed of two
subsystems: a filter and a classifier. The contaminations are very small ob-
jects immersed in a dense cloud of background artefacts produced by the X-ray
technology, therefore a general machine learning technique would easily fail in
classifying items with contaminations from those free of them, by processing the
whole X-ray image. Therefore the domain of the classifier must be reduced to
a small neighbour of a possible intrusion. Identifying potential contamination
is the task accomplished by the filter. By a multi-threshold approach, the filter
is able to rapidly analyse an X-ray image and isolate a finite number of small
objects that are possible intrusions to be further checked by the classifier. The
filter subsystem was tuned on a training set of manually annotated images, and
tested on a set of 11008 images; it reached good performances in terms of false
negative rate (< 2% of non detected contaminations) but with a false positive
rate too high (58%). The CNN classifier then operated on just the possible in-
trusions selected by the filter, and decreased the false positive rate to less than
15%, while mantaining the false negative rate below 3%. The procedure is quite
fast, the response being within four seconds. The detection procedure can be
easily updated as the production develops and may show intrusions of different
kind or shape from those modelled.
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[17] Guillaume Lemâıtre, Fernando Nogueira, and Christos Aridas. Imbalanced-
learn: A python toolbox to tackle the curse of imbalanced datasets in
machine learning, 09 2016.

[18] Hui Lin, Bin Li, Xinggang Wang, Yufeng Shu, and Shuanglong Niu. Auto-
mated defect inspection of led chip using deep convolutional neural network.
Journal of Intelligent Manufacturing, 30(6):2525–2534, 2019.

[19] Kai Ling Mak and P Peng. An automated inspection system for textile
fabrics based on gabor filters. Robotics and Computer-Integrated Manufac-
turing, 24(3):359–369, 2008.
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