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Abstract
In this paper, a new derivative-free method for Worst Case Analysis (WCA) of circuit
design is defined. A WCA of a device can be performed by solving a particular min-
imization problem where the objective function values are obtained by a simulation
code and where some variables are subject to a spherical constraint and others to box
constraints. In order to efficiently tackle such a problem, the paper defines a new DF
algorithm which follows a two blocks Gauss Seidel approach, namely it alternates
an approximated minimization with respect to the variables subject to the spherical
constraint with an approximated minimization respect to the variables subject to the
box constraints. The algorithm is described and its global convergence properties are
analyzed. Furthermore it is tested in the WCA of a MOSFET operational amplifier
and its computational behaviour is compared with the one of the efficient optimization
tool of the WiCkeD suite for circuit analysis. The obtained results seem to indicate
that the proposed algorithm is promising in terms of average efficiency, accuracy and
robustness.
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1 Introduction

Commodity integrated circuit (IC) chips are commonly fabricatedwith complementary
metal-oxide-semiconductor field-effect transistor (MOSFET) devices. This is due to
the low power draw, small dimensions, and cheap manufacturing cost of MOSFET IC
chips. Analog circuits, such as operational amplifiers, analog-digital converters, and
radio frequency transducers are often implemented as components in an IC chip [18].

MOSFET devices exhibit complex and multifaceted behaviors and this implies
that accurate analyses of their behaviors very often require complex numerical circuit
simulators. These simulators usually need to calculate the circuit response to electrical
stimulus and, hence, they can require very high computational costs.

Despite this difficulty, the numerical circuit simulators represent important tools for
the designs of analog circuits (see, i.e., [3,8,9,13,14,16,24,26]) andmature commercial
tools are also available [22]. Furthermore they are also extremely useful in helping
designers to study the robustness of the circuits produced, namely to estimate the worst
differences between “optimal theoretical” behaviours of the circuit and the “real” ones.
These differences can be due to (for example):

– imperfections of sub-wavelength lithography, randomdopant fluctuations, and line
edge roughness during the integrated circuit fabrication procedure;

– different electrical and environmental operating conditions such as changes in
supply voltage from the nominal value, variations in circuit temperature.

There is an interest in circuit designs which are as robust as possible with respect to
the effects of process and environmental variations on the circuit performance metrics.
However it is necessary to have techniques to accurately estimate the behavior of a
circuit according to all the possible realizations of such variations.

An important technique to perform a robust circuit optimization is the so called
“worst case analysis” (WCA) [15]. WCA considers a particular performance of the
circuit and determines the worst value that such performance can assume within all
the manufacturing and environmental fluctuations. A robust design could be the one
that corresponds to the “best” worst case analysis.

More formally, the worst case analysis consists in minimizing a objective function,
whose values are computed by a circuit simulation code, over a feasible set given by all
themanufacturing and environmental fluctuations. Therefore nofirst order information
of the objective function is available.

The algorithms previously proposed in literature (see [3,15]) overcome this diffi-
culty by approximating the first order information of the objective function with finite
difference techniques and then by using gradient-based optimization methods to solve
the given optimization problem. This approach generally performs well, however it is
well known [19] that sometimes the use of first-order approximation can be inefficient
due to the presence of noise (such as the one caused by a simulator in calculating the
value of a objective function).
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In order to offer a possible alternative to the proposed gradient based approach, we
define a new derivative-free method specifically designed for solving the optimization
problem deriving from the WCA.

This method belongs the class of derivative free algorithms which try to overcome
the lack of gradient information by efficiently sampling of the objective function over
the feasible region (see, f. e., [1,10,17,20]). Its distinguishing feature is to perform a
sampling of the objective function which exploits as much as possible the particular
structure of the feasible set of the considered optimization problem. In fact the feasible
set is the Cartesian product of two particular closed convex sets. The proposed algo-
rithm takes into account this feature by following a two block Gauss Seidel approach
which combines the derivative free algorithms described in [19,21].

We present the algorithm and its convergence proprieties towards a stationary point
of the objective function. Then we report an analysis of its numerical performance on
a MOSFET operational amplifier. This analysis is completed with the comparison of
the proposed algorithm with WiCkeD [22], a suite for circuit analysis and optimiza-
tion. WiCkeD implements an efficient deterministic yield WCA where the gradient is
calculated throughout the use of finite differences.

The paper is organized as follows. In the next section we introduce the parameters
involved in the problem and explain WCA in detail. In Sect. 3 we report the algorithm
with its convergence proprieties. Finally in Sect. 4 we present the Miller operational
amplifier together with numerical results.

2 Circuit worst case analysis problem

WCA considers a particular performance which can characterize the circuit behavior
(for example, gain or slew-rate described in the results section). Each performance is
an expression of the circuit node voltages and terminal currents, and can be calculated
by numerical circuit simulations.

For every possible choice of the apparatus of the circuit, every performance depends
on two classes of parameters. The first class consists of the process parameters, which
specify the apparatus as well, but their values can have fluctuations due to the man-
ufacturing process. The second class consists in the operational parameters which
represent the environmental conditions in which the circuit works and, hence, their
values surely have fluctuations.

In correspondence of a particular design, the aim of the worst case analysis is to
predict the maximum deterioration of the performance due to the variations of the
process and operational parameters. Formally, the worst case analysis tries to find the
worst value of a objective function with the following structure:

f (x, y),

where x ∈ R
n is the vector of process parameters, y ∈ R

m is the vector of operational
parameters and f : Rn ×R

m → R represents the value of the chosen performance for
a given choice of (x, y), We recall that the values of f are usually given by a complex
simulation process (see, for example, [7]).
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As regards x , it is a real valued vector which represents the random variations
of process parameters between different manufactured circuits. Therefore x can be
represented by a vector of random variables associated with an arbitrary probability
density function, that without loss of generality, can be transformed into a normal
standard distribution of random variables [11]. Therefore we can write

x ∈ R
n, x ∼ pdf N (0, I) . (1)

Consequently, the mean of x is the zero vector, 0, and the covariance matrix is the
identity matrix, I, of dimension n × n.

As regards y it is a real valued vector which represents the random variations of
operational parameters, namely represents the different environmental conditions in
which the circuit canwork after production. Therefore y can be represented by a vector
of random variables uniformly distributed in a box constrained region, namely:

{
y ∈ R

m : l ≤ x ≤ u, l ∈ R
m, u ∈ R

m}
.

However, WCA can be performed by avoiding the difficulties associated with the
handling of random variables. Assuming, without loss of generality, that the designer
is interested in a lower bound on the values of the given performance, WCA can be
obtained by solving the following optimization problem:

min
x,y

f (x, y)

‖x‖2 ≤ r2

l ≤ y ≤ u

. (2)

The first constraint relates to the need to find the lowest value of the performance
with respect all the process fluctuations that are under a certain threshold r . This
threshold is chosen so to guarantee that there is a (high) probability that the realizations
of the random variable x fall into such region. Since the process parameters x are
distributed according to a normal standard distribution, there is a one to one relation
between the values of the threshold r and the probability that the realizations of the
random variable x fall into the spherical constraint. For example r = 1 gives a region
{x ∈ Rn, ‖x‖2 ≤ r2} which corresponds to a probability of the 84% of the total
possible realizations of the circuit, while r = 3 it corresponds to the 99.9% of the total
realizations. Therefore, if r = 1, this constraint implies that the minimization of the
performance is performed with respect of 84% of the possible variations of process
parameters, namely with respect of 84% of circuit realizations [15].

The second constraint takes into account that the variations of the operational param-
eters are uniformly distributed in a defined box. In fact this constraint ensures that the
minimization of the performance is performed with respect all the possible values of
the random variable y.

3 Optimization procedure

As described in the preceding sections, the worst case analysis requires the solution
of a minimization problem with the following structure:
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min
x,y

f (x, y)

x ∈ S
y ∈ X

(3)

Where x ∈ R
n , y ∈ R

m , f : Rn × R
m → R is a C1 function and

S :=
{
x ∈ R

n, ‖x‖2 ≤ r2
}

, Y := {
y ∈ R

m, l ≤ y ≤ u
}
, (4)

with l ∈ R
m , u ∈ R

m and r is a positive scalar.
The feasible set of Problem (3) can be rewritten as: F := S × Y .
In connection with the preceding problem it is possible to introduce the following

definition of a stationary point.

Definition 1 A feasible point (x̄, ȳ) ∈ F is a stationary point of Problem (3) if

∇x f (x̄, ȳ)
T dx + ∇y f (x̄, ȳ)

T dy ≥ 0 ∀dx ∈ T (x̄), ∀dy ∈ D(ȳ).

where for all x, y ∈ F :

T (x) :=
{
d ∈ R

n if ‖x‖2 < r2

d ∈ R
n : xT d ≤ 0 if ‖x‖2 = r2

D(y) := {
d ∈ R

m : di ≥ 0 if yi = li , di ≤ 0 if yi = ui
}
.

Then it is possible to recall a well known optimality condition (see [5] or Chapter
2 of [6] for the proof).

Theorem 1 If a feasible point (x∗, y∗) ∈ F is a local minimum point for (3) then it is
also a stationary point.

As described in the previous sections, one distinguishing feature of the class of
WCA optimization problems (3) is the fact that the values of the objective function
are obtained by a simulation procedure. This precludes the possibility to compute
the analytical expression of the derivatives. Furthermore, the simulators sometimes
introduce noise in the calculations of the objective function values, such that the first
order information on the function cannot be efficiently approximated.

These difficulties indicate that a suitable approach to tackle this class of mini-
mization problems can be the use derivative-free methodologies, namely optimization
algorithms that exploit only the evaluations of the objective function (see for example
[1,4,10,12,17,25]).

For many complex circuits, the simulation of performances values can be expensive
in terms of CPU time. Therefore, for these real-world problems, the algorithm should
make significant progress toward the solution in a few evaluations of the objective
function. In order to meet this need, the class of linesearch-based derivative-free algo-
rithms has been considered. The common idea of this class of algorithms is to use a
derivative-free line search technique along some suitable sets of directions. The sets

123



1562 V. Latorre et al.

of directions must convey sufficient information on the local behavior of the objec-
tive function. The algorithm chooses a direction and checks if there is a sufficient
decrease of the objective function along such direction. In this case the algorithm
performs an extrapolation along the considered direction in order to exploit as much
as possible the decrease of the objective function values. This extrapolation strategy
usually strengthens the ability to produce points where the function has the significant
decreases especially in the early iterations. Namely, when the points considered by
the algorithm are far from being local minima.

Another important distinguishing features of the problem (3) is the structure of its
feasible set which is the Cartesian product of two particular closed convex sets: the
operating variables y are constrained by simple bounds constraints, while a spherical
constraint is imposed on the process variables x . The algorithm proposed in this
paper tries to exploit as much as possible this structure by adopting a two block Gauss
Seidel approach. It alternates a approximated minimization with respect to the process
variables x and an approximatedminimizationwith respect to the operatingvariables y.
In particular, theminimizationwith respect to x is performedby following the approach
proposed in [19] where a derivative-free algorithm for the bounds constrained problem
is described. Instead, the minimization with respect to y is performed by using the
derivative-free model described [21] for minimization problems subject to constraints
belonging to a particular class which includes, as a special case, a spherical constraint.

The following Algorithm describes the main steps of the proposed strategy.

Algorithm DFA- Derivative-Free Algorithm for Problem (3)

1: Given (x0, y0) ∈ F , α̃0 ∈ R
n+ and ᾱ0 ∈ R

m+.

2: Set k = 0

3: While (xk , yk ) is not a stationary point of Problem (3) do

4: Compute x̃k+1 and α̃k+1 byMinx (xk , yk , α̃k )

5: Compute ỹk+1 and ᾱk+1 byMiny (x̃k+1, yk , ᾱk )

6: Find (xk+1, yk+1) such that f (xk+1, yk+1) ≤ f (x̄k+1, ȳk+1) and (xk+1, yk+1) ∈ F ,

7: Set k = k + 1

8: End while

Roughly speaking, given an initial point (x0, y0) ∈ F the main idea behind the
algorithm is that, for every iteration k = 0, 1, . . . :

– an approximated minimizer x̄k+1 of f (·, yk) is computed by Procedure Minx ;
– an approximated minimizer ȳk+1 of f (x̄k+1, ·) is computed by Procedure Miny ;
– a point (xk+1, yk+1) such that: f (xk+1, yk+1) ≤ f (x̄k+1, ȳk+1) can be selected,
this guarantees that every approximation technique (able to improve the point
(x̄k+1, ȳk+1)) can be included in the framework without precluding the global
convergence properties of the algorithm (if no additional procedure is used then
(xk+1, yk+1) = (x̄k+1, ȳk+1)).
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Both the Procedures Minx and Miny perform their approximate minimization by
sampling the value of the objective function along two suitable sets of search directions
which try to exploit the particular structure of the sets D and Y .

In particular, at every iteration k, theProcedureMinx takes into account the spherical
constraint on x by setting as search directions dix , i = 1, . . . , n:

– the coordinate directions if the point xk is sufficiently interior to the feasible set;
– a set of n directions composed by an orthogonal direction to the sphere in the
considered point and n−1 directions that are an orthonormal base of the hyperplane
tangent to the sphere in that point if the point xk is close to the boundary of the
feasible set (see [21] for details).

Every direction dix , i = 1, . . . , n is analyzed to check if an improvement of the
objective function along such direction can be obtained. If the current point zik is in the
interior (lines 9 and 10) no change is applied on the direction. If such point is close
to the boundary, direction dix is projected on the cone of first order feasible variations
in zik with respect to the spherical constrain:

d̂i = P{
d:(zik

)T
d≤0

}
[
dix

]
=

(

I − zik z
i
k
T

∥∥zik
∥∥2

)

di .

Thanks to the spherical nature of the constraint the projection of the direction can
be calculated in closed form as reported at line 12. Then the algorithm checks if a
“sufficiently” improvement of the objective function can be found along the current
direction in the initial stepsize α̃i

k . If the algorithm fails to improve the objective
function along the direction, it tries the opposite direction. If no improvement is found
along the opposite direction as well, the algorithm decreases the next initial stepsize
and tries a new direction. In case when the initial stepsize produces a “sufficiently”
improvement of the objective function along the considered direction or along its
opposite direction, the algorithm finds an efficient stepsize αi

k by using a derivative-
free projected linesearch technique (Procedure LSx ) and produces the new point zi+1

k .
Finally it updates the next initial stepsize.

The approaches of Procedure Miny and Procedure LSy are quite similar to the ones
of Procedure Minx and Procedure LSx but they exploit the simple structure of the box
constraints which the new point yk+1 must satisfy. In particular, at every iteration,
Procedure Miny can use, as search directions, the coordinate axes and does not need
any projection. Similarly Procedure LSy can determine an efficient stepsize along a
direction avoiding any projection by computing first the maximum possible stepsize
such that the new point is feasible.

The following theorem reports the convergence property of Algorithm .

Theorem 2 Let {(xk, yk)} be a sequence generated by Algorithm then every accumu-
lation point of {(xk, yk)} is a stationary point of Problem (3).

Proof First we have to prove that the constraint ‖x‖2−r2 ≤ 0 satisfies the Conditions
B and C in [21]. It is easy to notice that it surely exists a d ∈ R

n satisfying:

2x̃ T d < 0 with ‖x̃‖2 = r2.
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Procedure Minx (xk, yk, α̃k)
1: Data γ ∈ (0, 1), θ ∈ (0, 1) and ε > 0.
2: If ‖xk‖2 − r2 ≤ −ε then
3: Set dix = ei , i = 1, . . . , n
4: Else
5: Compute the directions d1x , . . . , dnx such that:

d1x = − xk
‖xk‖ , d2x , . . . , dnx are an orthonormal base of {x ∈ R

n : xTk x = 0}

6: End if
7: Set i = 1, zik = xk ,
8: For i=1,…, n
9: If ‖zik‖2 − r2 ≤ −ε then

10: d̂i = dix
11: Else

12: d̂i =
(

I − zik z
i
k
T

‖zik‖2

)

di

13: End if
14: If f (PS [zik + α̃ik d̂

i
x ], yk ) ≤ f (zik , yk ) − γ (α̃ik )

2 then

15: Compute αik by LSx (α̃ik , z
i
k , yk , d̂

i
x , α

i
k ), set α̃ik+1 = αik

16: Else
17: If f (PS [zik − α̃ik d̂

i
x ], yk ) ≤ f (zik , yk ) − γ (α̃ik )

2 then

18: Compute αik by LSx (α̃ik , z
i
k , yk , −d̂ix , α

i
k ), set α̃ik+1 = αik , d̂

i
x = −d̂ix

19: Else
20: Set αik = 0 and α̃ik+1 = θα̃ik
21: End if
22: End if
23: Set zi+1

k = PS [zik + αikd
i
x ]

24: End for
25: Set x̃k+1 = zn+1

k
26: Return x̃k+1 and α̃k+1

Procedure LSx (α̃i
k, z

i
k, yk, d

i
x , α

i
k)

1: Data γ ∈ (0, 1) and δ ∈ (0, 1).
2: Set β = α̃ik/δ and αik = α̃ik

3: While f (PS [zik + βdix ], yk ) ≤ f (zik , yk ) − γ (β)2

4: αki = β and β = β
δ

5: End while
6: Return αik

This implies that the constraint satisfies the MFCQ at every point where the spherical
constraint is active. Recalling the results reported on page 43 of [21], Assumption B
is satisfied.
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Procedure Miny(xk+1, yk, ᾱk)
1: Data γ ∈ (0, 1) and θ ∈ (0, 1)
2: Set set w1

k = yk and diy = ẽi , for i = 1, . . . ,m
3: For i=1,…,m
4: Compute αmax such as (wi

k + αmaxdiy) ∈ ∂Y and set α = min{ᾱik , αmax }.
5: If α > 0 and f (x̄k+1, w

i
k + αdiy) ≤ f (x̄k+1, w

i
k ) − γα2 then

6: Compute αik by LSy ( α, αmax , x̄k+1, w
i
k , d

i
y , α

i
k ), set ᾱik+1 = αik

7: Else
8: Compute αmax such as (wi

k − αmaxdiy) ∈ ∂Y and set α = min{ᾱik , αmax }.
9: If α > 0 and f (x̄k+1, w

i
k − αdiy) ≤ f (x̄k+1, w

i
k ) − γα2 then

10: Compute αik by LSy (α, αmax , x̄k+1, w
i
k , −diy , α

i
k ), set ᾱik+1 = αik , di = −di

11: Else
12: Set αk = 0, ᾱik+1 = θᾱik
13: End if
14: End if
15: Set wi+1

k = wi
k + αikd

i
y .

16: End for
17: Set ỹk+1 = wm+1

k
18: Return yk+1 and ᾱk+1

Procedure LSy( α, αmax , x̄k+1, w
i
k, d

i
y, α

i
k)

1: Data γ > 0, δ ∈ (0, 1)
2: Set β = min

{
αmax ,

α
δ

}
and αik = α

3: While f (xk , w
i
k + βdiy) ≤ f (xk , w

i
k ) − γβ2

4: If β = αmax then
5: Set αki = β and Return αik
6: End if
7: Set αki = β and β = min

{
αmax ,

β
δ

}

8: End while
9: Return αik

For Assumption C we have to prove that for every x̄ ∈ F there exist scalars ξ > 0
and η > 0 such that

min
z∈S ‖z − x‖ ≤ η[(‖x‖2 − r2)]+ ∀x ∈ Bξ (x̄).

Such condition is trivially satisfied if x ∈ S. Otherwise we can easily prove that the
solution of minz∈S ‖z − x‖ is obtained when z is the projection of x on S, namely
z = r x

‖x‖ . Therefore we have:

min
z∈S ‖z − x‖ = ‖r x

‖x‖ − x‖ = 1

‖x‖‖(r − ‖x‖)x‖.
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From the Cauchy–Swartz inequality:

1

‖x‖‖(r − ‖x‖)x‖ ≤ 1

‖x‖ |(r − ‖x‖)|‖x‖ = |(r − ‖x‖)| |r + ‖x‖|
|r + ‖x‖|

= ‖x‖2 − r2

|r + ‖x‖| ≤ 1

r

(
‖x‖2 − r2

)
,

if we choose η < 1
r , then Assumption C holds.

From the instructions of Algorithm we have for all k:

f (x̄k+1, yk) ≤ f (xk, yk) − γ

n∑

i=1

(
αi
k

)2
,

f (x̄k+1, ȳk+1) ≤ f (x̄k+1, yk) − γ

m∑

i=1

(
αi
k

)2
,

f (xk+1, yk+1) ≤ f (x̄k+1, ȳk+1).

Considering the compactness of the feasible set, the sequences { f (xk, yk)},
{ f (x̄k, yk)}, { f (x̄k, ȳk)} all converge to the same limit. By using this propriety, all
the theoretical proofs reported in [19,21] can be repeated with small modifications.
Therefore if (x̂, ŷ) is an accumulation point of the sequence {(xk, yk)} the results
reported in [21] imply that:

∇x f (x̂, ŷ)
T dx ≥ 0 ∀dx ∈ T (x̂), (5)

while the results reported in [19] ensure that:

∇y f (x̂, ŷ)
T dy ≥ 0 ∀dy ∈ D(ŷ). (6)

Then the (5) and the (6) guarantee that (x̂, ŷ) is a stationary point of f (·). ��

4 Numerical results

The derivative-free algorithm described in this paper is applied to a practical prob-
lem from the domain of analog circuit design. A typical problem is the analysis of a
MOSFET operational amplifier. The reader is referred to reference [2] for a thorough
introduction to MOSFET circuit design—including operational amplifiers. A MOS-
FET operational amplifier is typically operated in a negative feedback configuration.
It is used to define a closed-loop transfer function with high precision.

In this paper, theMiller Operational Amplifier (MOA) topology is used as shown in
Fig. 1a. TheMOA has differential (plus and minus) input terminals and a single-ended
output terminal. It is composed of six p-type MOSFET devices, P1–P5, and three
n-type devices, N1–N3. A coupling capacitor, Cc, creates an internal feedback path
between circuit stages. TheDCcurrent source Ibias canbe tuned to change the quiescent
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(a)

(b)

(c)

MOA

MOA

2N1N 3N

P1 P2 Cc

3P 5P4P

+ out

Vss

Vdd

Vpower

Rloop

Cloop

Cload

VoutVin

Vcm

Cload

VoutVin

Ibias

Fig. 1 a The Miller operational amplifier topology (MOA). b Testbench used in transfer function (XF)
analysis. c Testbench used in transient and DC-sweep analysis

operating point of the circuit node voltages and branch currents. The DC voltage of
sources Vdd and Vss are the positive and negative voltage supplies respectively; their
sum defines the voltage drop, Vpower , between the positive and negative supply nodes:
Vpower = Vdd + Vss .

Accurate numerical circuit simulation requires highly detailed mathematical MOS-
FET models. In particular, the results reported in this paper are based on the the
industry-standard BSIM4 models [23] and on the commercial tool Spectre for numer-
ical circuit simulation [7].

For the MOA, the operating parameters are:

– Ibias the value of the DC bias current shown in Fig. 1a. The nominal value is
4.0µA. The range is 3.0 ≤ Ibias ≤ 5.0µA.

– Vpower the value of the voltage drop between the positive and negative supply
nodes. The nominal value is 2.2V. The range is 2.0 ≤ Vpower ≤ 2.4V.

– T circuit temperature during operation. The nominal value is 27.0 ◦C. The range
is 0 ◦C ≤ T ≤ 100 ◦C.

As regards the process parameters, a screening phase has pointed that only eight
process parameters significantly affect the MOA performance features and that only
these parameters need to be considered:

– VthN1,VthN2,VthP3,VthP4 the threshold voltages at zero substrate bias of devices
N1, N2, P3, and P4, respectively.

– XL the offset in channel length due to over or under etching, line edge roughness,
and lithography imperfections.

– Tox the gate oxide thickness.
– U0 the low-field mobility.
– Ndep the substrate doping concentration.

The threshold voltages are local parameters particular to an individual device.
Parameters XL , Tox, U0 Ndep are global parameters; their values are shared amongst
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all devices. The process parameters have been transformed to have standard normal
distributions with zero correlation in the device models.

Eleven basic performance features of an operational amplifier are listed below. They
will be the objectives of worst-case analysis. The first six performances depend on
the circuit frequency response. They can be calculated using the testbench shown in
Fig. 1b and a transfer function (XF) analysis in Spectre. Components Rloop and Cloop

are set to large values, so that Rloop acts as a high impedance path, and Cloop acts as a
low impedance path for frequencies f ≥ 100 Hz.

1. Low-frequency voltage gain (Al f ): defined as the magnitude of the frequency
domain transfer function from the input Vin( f ) to the output Vout( f ) for f =
100 Hz;

2. Unity gain bandwidth ( fUGBW ): the frequency such that A( fUGBW ) = 1.
3. Phase margin (PM): it is the difference between phase at f = fUGBW and −180◦;
4. Rejection of low-frequency signals injected at the positive supply node

(PSRR-Vdd ): it is defined as the ratio of two transfer functions. The numerator
is Al f . The denominator is the magnitude of the frequency domain transfer func-
tion from the positive voltage supply, Vdd( f ), to the output, Vout( f );

Hdd( f ) =
∣∣∣∣
Vout ( f )

Vdd( f )

∣∣∣∣ , f = 100 Hz �⇒ PSRR-Vdd = Al f

Hdd(100)
.

5. Rejection of low-frequency signals injected at the negative supply node
(PSRR-Vss): it is defined similarly to PSRR-Vdd , but starting with the negative
supply, Vss( f ).

6. Rejection of low-frequency signals common to both the plus and minus input
terminals (CMRR): it is the ratio of two transfer functions. The numerator is Al f .
The denominator is the magnitude of the frequency domain transfer function from
the common-mode supply, Vcm( f ), to the output, Vout ( f );

Hcm( f ) =
∣∣∣∣
Vout ( f )

Vcm( f )

∣∣∣∣ , f = 100Hz �⇒ CMRR = Al f

Hcm(100)
.

Performances 7–10 are features of the circuit transient step response. They are
calculated using the testbench shown in Fig. 1c and a transient analysis in Spectre.
Performance 11 depends on the static response of the MOA (Fig. 2).

7. Rising slew rate (SR-rising): for a rising step function, SR-rising is the average
rate of change in the output voltage, Vout , per unit of time; SR-rising is expressed
in V /µs.

8. Falling slew rate (SR-falling): Similar to SR-rising, but for a falling step function.
9. Settling time when rising (TS-rising): for a rising step function, TS-rising is the

time in µs required for Vout to settle within a 2% band about the final value.
10. Settling time when falling (TS-falling): Similar to TS-rising for a falling step

function.
11. Output voltage swing (Vswing): the linear range of Vout without clipping.
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Fig. 2 a The transient step response for the testbench in Fig. 1c. The calculation of SR-rising and TS-rising
is illustrated. bDC sweep analysis for the testbench in Fig. 1c. The DC value of Vin is swept, Vout is plotted,
and Vswing is calculated as illustrated

The MOA DC transfer characteristic is nonlinear; Vout is clipped if Vin is too large
or too small. The output voltage swing limits the magnitude of the input signals that
can be applied, so a large Vswing is desired.

Some performances are only influenced by a subset of the process parameters. We
use the sensitivity analysis to identify such parameters and perform the optimization
only with the relevant ones for every performance.

The experiments are performed on the computational grid available at the Technical
University of Munich. The tests are performed remotely on a grid of processors, and
in order to measure the speed of the two methods we report the number of simulations
needed to reach a solution. Such number, in the case of DFA, also corresponds to
the number of iterations. The simulation is the heaviest computational burden of the
algorithms, and the other operations are negligible.

In Table 1, the results of worst-case analysis using the new DFA algorithm are
reported. Both the process and the operational parameters are considered by the algo-
rithm. In order to have a feel about the possible practical interest of the proposed
derivative-free algorithm, we also report the results for WiCkeD 6.7. WiCkeD uses a
deterministic local search algorithm, where the derivatives of each performance fea-
ture with respect to the input parameters are approximated with sampling techniques
at each iteration step of the search process. For both the algorithms the starting point
for the operational variables are their nominal values, while for the process variables
the initial point is the origin in Rn . The parameter r is set to r = 6 in order to assure a
so called six-sigma design.

In the table we report: the performance name; the number of process and operating
parameters (n + m); whether the worst case is a performance minimum or maximum
(max/min); the nominal performance value ( f0); the number of evaluations and the
performance at worst-case for the DFA algorithm; the number of evaluations and the
performance at worst-case for the WiCkeD algorithm;

The results reported in Table 1 seem to indicate that DFA is capable of substantially
improve the objective functionwith relatively few simulations. In particular themethod
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Table 1 Worst-case analysis results for the DFA and WiCkeD

Performance n + m max/min f0 DFA (new) WiCkeD

EVALS fl/u EVALS fl/u

Al f 11 min 79.683 49 75.232 53 75.271

PM 11 min 82.439 73 80.9180 66 80.920

fUGBW 11 min 990.8 73 584.2 54 586.2

CMRR 7 min 87.887 28 78.7481 303 78.196

PSRR-Vdd 7 min 122.096 29 87.321 319 83.756

PSRR-Vss 7 min 83.536 29 76.134 52 76.094

SR-rising 8 min 0.5661 33 0.347 70 0.340

SR-falling 6 max − 0.622 24 − 0.388 42 − 0.386

TS-rising 8 max 1.760 32 2.899 72 2.901

TS-falling 6 max 1.583 23 2.529 67 2.531

Vswing 5 min 1.675 14 1.387 38 1.390

is able to quickly decrease the value of the objective function in the first iterations,
while the majority of iterations are necessary to assure the convergence to a stationary
point. Such behavior shows a capability to easily recognize the process parameters
that have the highest influence on the performance. Such propriety of the algorithm
can assure the possibility to reach a good point even with a looser stopping criterium.

For what regards the comparison with WiCkeD, it is possible to notice that for the
performances Vswing, TS-falling, TS-rising, SR-falling, PSRR-Vss and CMRR the two
algorithms reach similar values of the objective function, but DFA saves a significant
number of simulations.

For the PSRR-Vdd , wicked reaches a better value of the objective function, but DFA
takes one tenth of the simulations to reach the reported solutions.

For the performance Al f the two algorithms perform in a similar way with DFA
being a little better for the value of the objective function and thenumber of simulations,
while for the PM the DFA takes little more simulations than WiCkeD to reach the
solution.

Finally for the fUGBW DFA reaches a better value of the objective function with
few more simulations.

Therefore the results show that DFA is able to find solutions that consistently
improve the value of the objective function in the initial point. Furthermore, the com-
parison to the results obtained by using WiCkeD (that is the current software used
in industrial applications for circuit optimization) seems to show that the proposed
method is efficient in term of average number of simulations needed to reach a solu-
tion.

In conclusions this preliminary numerical experimentation suggest that the defi-
nition of specialized derivative-free algorithms could be an interesting approach for
getting good values of the objective function by requiring a reasonable and efficient
computational burden.
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