
J Optim Theory Appl (2015) 164:842–861
DOI 10.1007/s10957-013-0441-2

Derivative-Free Robust Optimization for Circuit Design

Angelo Ciccazzo · Vittorio Latorre ·
Giampaolo Liuzzi · Stefano Lucidi ·
Francesco Rinaldi

Received: 16 January 2013 / Accepted: 28 September 2013 / Published online: 17 October 2013
© Springer Science+Business Media New York 2013

Abstract In this paper, we introduce a framework for derivative-free robust opti-
mization based on the use of an efficient derivative-free optimization routine for
mixed-integer nonlinear problems. The proposed framework is employed to find a
robust optimal design of a particular integrated circuit (namely a DC–DC converter
commonly used in portable electronic devices). The proposed robust optimization ap-
proach outperforms the traditional statistical approach as it is shown in the numerical
results.

Keywords Robust optimization · Derivative-free methods · Circuit design

A. Ciccazzo
ST Microelectronics, Stradale Primosole 50, 95121 Catania, Italy
e-mail: angelo.ciccazzo@st.com

V. Latorre · S. Lucidi
Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”,
“Sapienza” Università di Roma, Via Ariosto 25, 00185 Rome, Italy

V. Latorre
e-mail: latorre@dis.uniroma1.it

S. Lucidi
e-mail: lucidi@dis.uniroma1.it

G. Liuzzi
Istituto di Analisi dei Sistemi ed Informatica (IASI) “A. Ruberti”, CNR, Viale Manzoni 30,
00185 Rome, Italy
e-mail: giampaolo.liuzzi@iasi.cnr.it

F. Rinaldi (B)
Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy
e-mail: rinaldi@math.unipd.it

mailto:angelo.ciccazzo@st.com
mailto:latorre@dis.uniroma1.it
mailto:lucidi@dis.uniroma1.it
mailto:giampaolo.liuzzi@iasi.cnr.it
mailto:rinaldi@math.unipd.it

J Optim Theory Appl (2015) 164:842–861 843

1 Introduction

In the last decades, the complexity of digital integrated circuits (ICs) has been increas-
ing exponentially, with the number of components or devices in a single IC more than
doubling every year. Some current ICs contain over 100 million devices and a sim-
ilar number of wires connecting them and have dimensions of the order of nanome-
ters. As a consequence of the scaling of device dimensions to nanometer size, we
face a multitude of challenges in designing complex circuits. Major challenges come
from parametric variation such as intra- and inter-die variation of channel length, ox-
ide thickness, and doping concentration. These phenomena have a direct and deep
impact on system performance, resulting in parametric yield loss and reduced sys-
tem lifetime. Numerous approaches have been proposed to address these effects and
to increase parametric yield. Circuit design optimization techniques target to solve
some design problems by describing them in terms of decision variables (continuous
or integer), constraints on the variables (physical relationships, budget limitations,
performance requirements, and so on), and one or more objective functions to be
maximized or minimized (yield is an example). In this way, the design process is
modeled by a complex and large-scale optimization problem, often integrated with a
simulation tool. Various papers have been devoted to the use of optimization meth-
ods in the context of circuit design. We give here some examples of such papers. In
[1] trust-region-type algorithms have been proposed for the optimization of circuits.
Geometric programming is used in [2] for digital circuit optimization. A robust ap-
proach has been proposed in [3] for the sizing of digital circuits. In [4] a framework
for optimizing dynamic control of various self-tuning parameters over lifetime in the
presence of circuit aging is defined. For more details about optimization methods in
circuit design, we address the interested reader to the book [5].

Uncertainty is commonly present in circuit design problems (due to the parametric
variations of the circuit) and often lead to suboptimal (or even infeasible) solutions.
There exist two different classes of perturbations:

(1) implementation errors, mainly caused by imperfect realization of the circuit vari-
ables;

(2) parameter uncertainties, which are due to modeling errors during the problem
definition (e.g., noise).

Stochastic optimization approaches represent the classic way for dealing with un-
certainty in real-world applications. In this case, the probability distributions of the
uncertainties are estimated and directly incorporated into the model. In recent years,
robust optimization approaches have become very popular, and a considerable lit-
erature has been developed both for solving convex [6–9] and nonconvex problems
[10–13]. The goal in robust optimization is finding the design with the best worst-
case performance. In this context, min–max approaches are usually adopted to find
a robust optimal design with best worst-case performance. In almost all the existing
approaches, the authors assume that objective functions and constraints are given ex-
plicitly or that there exists a tool providing objective functions and constraints of the
problem at a given point as well as their gradients. On the contrary, in [13] a method
is proposed that does not use any first-order information.

844 J Optim Theory Appl (2015) 164:842–861

In this paper, we assume that

• no first-order information is available (which is often the case in simulation-based
optimization problems);

• function evaluations are costly and noisy, so that finite difference approximation
cannot be applied;

• there exists a subset of circuit variables that only assumes discrete values.

We then develop a derivative-free approach for robust optimization and use it to solve
a hard real-world circuit design problem.

In Sect. 2, we formally introduce the problem we want to solve and give some
details about it. Then, in Sect. 3, we recall the derivative-free algorithm for local
mixed-integer optimization proposed in [14], and we show how it can be used to
solve the robust optimization problem. In Sect. 4, we apply the proposed approach to
optimally design a DC–DC converter and show its efficiency, when compared with
a classic stochastic approach, both in terms of number of function evaluations and
circuit yield. Finally, we draw some conclusions in Sect. 5.

2 Robust Optimization for Circuit Design

When dealing with real-world derivative-free optimization problems, we first need to
specify inputs and outputs. In our case, the inputs are the so-called circuit variables.
Circuit variables can be divided into three different classes:

• Design Variables xd: these variables represent transistor geometries (e.g., channel
widths and lengths);

• Operating Variables xo: these variables model operating conditions (e.g., supply
voltage and temperature);

• Statistical Variables xp: these variables are usually subject to uncertainty due to
fluctuations in the manufacturing process (e.g., oxide thickness, threshold voltage,
and channel length reduction).

Electronic devices are replicated multiple times on a wafer (a small thin circular slice
of a semiconducting material, such as pure silicon, on which an integrated circuit can
be formed), and different wafers are produced, but each device cannot be produced
in the same way in terms of electrical performance. The main factors that make the
fabrication result uncertain are: the imperfections characterizing the masks and tol-
erances in their positioning, various changing effects of ion plant temperature during
production, tolerances in size, etc. Generally, fluctuations’ processes produce fluctu-
ations in electrical performance. Consequently, an essential tool for electronic circuit
design is represented by the statistical model that formally relates the former to the
latter. Typically, the statistical variables are used in the definition of these models.
There exist two different classes of statistical variables:

• Process Variables: these variables determine the behavior of the instantiated de-
vices, such as junction depths, sheet resistances, dielectric thickness, and doping
levels.

J Optim Theory Appl (2015) 164:842–861 845

• Geometric Layout Variables: device length and width, and more specific param-
eters related to the layout.

It is possible to use different methods for the specification of statistical variables
variation (e.g., a uniform distribution with a given relative variation, a uniform distri-
bution with a given absolute variation, and a Gaussian distribution centered at mean
value with a given standard deviation).

The outputs, in circuit design problems, are the Performance Features of the cir-
cuit. Typical examples of performance features are delay, gain, phase, margin, slew
rate, etc. Performance Features (pi , i = 1, . . . ,m) usually need to satisfy some con-
straints (Performance–Specification Features):

li ≤ pi(xd, xo, xp) ≤ ui, i = 1, . . . ,m.

We say that the circuit is in full working order if all performance–specification fea-
tures are satisfied.

We focus on the Performance Centering Problem. Given a certain number of per-
formance features and the related specifications, we want to design a circuit in full
working order. In practice, our goal is that of finding suitable values for the circuit
variables, so that performance features meet the given specifications. Now, we give
some details about the various phases of the procedure.

The optimal design of a circuit is a very challenging problem that can be charac-
terized by three different phases:

(1) Nominal Design Optimization: we try to optimize the performance while keep-
ing fixed operating and statistical variables;

(2) Worst-Case Optimization: we minimize the worst-case performance deviation
in a given region of the operating variables;

(3) Yield Optimization: we finally maximize the yield, the percentage of manufac-
tured circuits that satisfy the performance specification when varying statistical
variables.

2.1 Nominal Design Optimization

In this phase, we try to optimize the performances (i.e., we try to find a solution that
minimizes the violations of the given specifications), while keeping fixed operating
and statistical variables (i.e., xo = x̄o and xp = x̄p). This can be done by solving the
following problem:

min
xd

m∑

i=1

max
{
0, li − pi(xd, x̄o, x̄p)

}q + max
{
0,pi(xd, x̄o, x̄p) − ui

}q
, (1)

where q ≥ 1. The operating variables xo are usually fixed to typical values (e.g.,
V = 2.3 V, T = 27 ◦C), whereas the statistical variables xp are usually fixed to zero.
The solution obtained is then used as a starting point for the second phase.

846 J Optim Theory Appl (2015) 164:842–861

2.2 Worst-Case Optimization

In this second phase, we minimize the worst-case performance deviations from the
nominal values. In other words, we want that both typical and worst-case perfor-
mances satisfy the performance specifications. In order to carry out the worst-case
optimization, we need to perform worst-case analysis. In practice, we compute the
worst-case performances when the operating parameters can take any value within
the feasible region. This is equivalent to solving the following optimization prob-
lems:

min
xo

pi(x̄d , xo, x̄p), max
xo

pi(x̄d , xo, x̄p), i = 1, . . . ,m. (2)

Once we solve these problems, we obtain the worst-case operating variables x̄o,j , j =
1, . . . ,2m. In principle, one can perform this operation at anytime during the worst-
case optimization phase. Since in our case this analysis is a very time-consuming task
and the worst-case operating variables do not change when varying design variables
within certain ranges, we decided to perform it only at the beginning.

Now, we can formally state the problem to be solved in the Worst-Case Optimiza-
tion phase:

min
xd

l∑

j=1

αj

m∑

i=1

max
{
0, li −pi(xd, x̄o,j , x̄p)

}q +max
{
0,pi(xd, x̄o,j , x̄p)−ui

}q
, (3)

where q ≥ 1 and l = 2m + 1, so that the typical and worst cases are included in the
summation. Once again, the solution is used as a starting point for the next phase
(Yield Optimization).

2.3 Yield Optimization

In this last phase, the goal is maximizing the yield (i.e., the percentage of manu-
factured circuits that satisfy the performance specification when varying statistical
variables). We can formally define the Yield as follows:

Y =
∫ +∞

−∞
. . .

∫ +∞

−∞
δ(xp) · p df (xp) · dxp = E

{
δ(xp)

}

with Ap = {xp | l ≤ p(x̃d, x̃o, xp) ≤ u} and

δ(xp) =
{

1, xp ∈ Ap,

0, otherwise.

An estimator for the expectation value is

Ŷ = Ê
{
δ(xp)

} = 1

ns

ns∑

μ=1

δ
(
x(μ)
p

) = nok

ns

,

where x
(μ)
p ,μ = 1, . . . , ns , are ns samples drawn from a normal distribution. The

use of a normal distribution is quite common in this context (see, e.g., [5]). So, the

J Optim Theory Appl (2015) 164:842–861 847

estimator is given by the number of the sample elements that satisfy the specifications
(nok) divided by the total number of elements in the sample (ns).

A first possibility to deal with the problem is the so called Statistical Approach.
It consists in randomly generating a certain number of vectors, each representing the
statistical variables and minimizing the violation of the specifications in both typical
and worst case. The problem we want to solve is the following:

min
xd

ns∑

μ=1

l∑

j=1

αj

m∑

i=1

max
{
0, li −pi

(
xd, x̄o,j , x̄

(μ)
p

)}q +max
{
0,pi

(
xd, x̄o,j , x̄

(μ)
p

)−ui

}q

(4)
with q ≥ 1, x̄(μ)

p ,μ = 1, . . . , ns normally distributed sample elements, and l = 2m + 1.
Of course, in this case, we need to generate a sufficiently large sample to obtain reli-
able results.

A different way to face the Yield Optimization problem consists in reformulating
it as a robust optimization problem. The problem we want to solve in this case is

min
xd

max
xp

l∑

j=1

αj

m∑

i=1

max
{
0, li − pi(xd, x̄o,j , xp)

}q + max
{
0,pi(xd, x̄o,j , xp) − ui

}q

(5)
with q ≥ 1 and l = 2m + 1. So, the new formulation comes out by considering a
min–max problem that finds the best worst-case performance.

3 A Derivative-Free Algorithm for Robust Optimization

In the preceding section, we introduced robust optimization as a possible way to
deal with the Yield optimization. In particular, we introduced problem (5) that, more
generally, can be stated as the following problem:

min
v∈V ⊂R

n1
f (v) = min

v∈V ⊂R
n1

max
w∈W⊂R

n2
g(v,w), (6)

where f : Rn1 → R, g : Rn1+n2 → R, some of the v variables are constrained to
assume integer values, whereas the w variables are estimation of uncertain data or
implementation parameters. Let

V = {
v ∈R

n1 : lv ≤ v ≤ uv, vi ∈ Z, i ∈ Iz

}
,

W = {
w ∈R

n2 : lw ≤ w ≤ uw

}
,

where

Iz ⊆ {1, . . . , n1}
is a subset of indices related to the integer v variables. Furthermore, let us denote
Ic = {1, . . . , n1} \ Iz and assume that V and W are both compact.

We assume that g(v,w) is computed via numerical simulations so that first-order
derivatives of g and f are not available.

848 J Optim Theory Appl (2015) 164:842–861

We note that problem (6) is a semi-infinite minimax problem that encompasses
many real-world problems like, for instance, engineering design problems, e.g., mo-
tor design, ship design, circuit design problems, and many others.

Further, we remark that since g(v,w) is computed via numerical simulations, the
problem defined by the objective function

f (v) = max
w∈W⊂R

n2
g(v,w) (7)

is a hard black-box problem itself (since no derivative information is available) and
requires suitable methods to be solved. Various approaches exist for solving general
black-box optimization problems (see, e.g., [14–22] and references therein). Solution
methods for semi-infinite minimax problems are the subject of great research and, in
the context of black-box optimization, are lacking, except for the methods proposed in
[23, 24] for finite min-max problems and in [13] for bilevel continuous problems. In
order to tackle problem (7), we resort to a heuristic approach that can be designed by
drawing inspiration from local or global minimization methods. Both these choices
present some advantages and disadvantages. In particular,

– Local approaches often require a low number of function evaluations but can get
stuck in local optima;

– Global approaches, on the contrary, typically require a high number of function
evaluations but can compute a good approximation of a global optimum.

Since in our case computation of the function g(v,w) is very expensive in terms
of CPU time, we prefer to adopt a local approach for the solution of problem (7).

3.1 The Derivative-Free Optimization Algorithm

Now we recall the derivative-free algorithm for local mixed-integer optimization in-
troduced in [14]. Then, we show how it can be used to approximately compute the
function value f (v) and to solve the robust optimization problem. Finally, we carry
out some considerations regarding the connection between solution of problem (6)
and problem (7).

We consider the following problem:

min ϕ(x)

x ∈ X,

xi ∈ Z, i ∈ Iz,

(8)

where we assume that X is defined by bound constraints on the variables and that the
variables xi, i ∈ Iz, can only assume integer values.

Basically, the method can be thought of as a distributed algorithm in the sense that
all coordinates are considered cyclically, and a different search procedure is adopted
on the basis of the variable type. In order to introduce the formal description of the al-
gorithm, we first present a simplified procedure. We will then enrich the presentation
by adding more and more technical details.

J Optim Theory Appl (2015) 164:842–861 849

Procedure 1 A Mixed-integer derivative-free optimization framework
Input: an initial point x0 ∈ X.
Output: a stationary point of ϕ(x) (as defined in reference [14])

repeat
for i = 1,2, . . . , n do

if ith variable is continuous then do a continuous search along ith direction
else do a discrete search along ith direction
end if

end for
Try to (heuristically) improve the current point

until convergence

Procedure 2 A (more detailed) Mixed-integer derivative-free optimization frame-
work

Input: an initial point x0 ∈ X, a decrease parameter ξ0 > 0.
Output: a stationary point of ϕ(x) (as defined in [14])

Set k = 0.
repeat

Set y1
k = xk

for i = 1,2, . . . , n do
if ith variable is continuous
then compute an α continuous stepsize along the ith coordinate enforcing

α2-sufficient decrease
else compute an α discrete stepsize along the ith coordinate enforcing

ξk-sufficient decrease
end if
Produce new point yi+1

k

end for
if (yn+1

k)z = (xk)z and the stepsizes for discrete variables are equal to 1 then
set ξk+1 = θξk

else set ξk+1 = ξk .
end if
Find xk+1 ∈ X ∩Z s.t. ϕ(xk+1) ≤ ϕ(yn+1

k).
Set k = k + 1.

until convergence

Procedure 1 helps us to understand the main iteration loop of the algorithm we
will describe later on, which basically analyzes one coordinate direction at a time
and performs a different procedure depending on the type of variable under analysis.

Procedure 2 is characterized by two basic ingredients. The first one is the use
of two different searches for, respectively, continuous and discrete variables. The
second one is the decrease parameter ξ , which will define the sufficient decrease in
the linesearch for discrete variables.

850 J Optim Theory Appl (2015) 164:842–861

Then, we can add some details to the description of the last procedure. In particu-
lar, we specify how the decrease parameter is updated and how the new iterate xk+1

is obtained.
Now we are ready to present the complete MIDFO Algorithm (Algorithm 1). In

this complete version, we specify all the details and, in particular, how the actual (αi ,
i = 1, . . . , n) and tentative (α̃i , i = 1, . . . , n) stepsizes are computed and updated.
We recall (see, e.g., [14]) that the α̃is define the starting points of the extrapolations
(possibly) performed by the linesearch procedures, whereas the αis are the steps re-
turned by the linesearch procedures. We also define the stopping condition of the
outer iteration loop.

As it can be seen, for every variable, the algorithm performs either a Continuous
search or a Discrete search until the stepsize and the discrete sufficient reduction
parameters are small enough or the objective function value becomes smaller than a
prefixed threshold. In the following, we formally define the Continuous search (Pro-
cedure 3) and Discrete search (Procedure 4) procedures.

The Continuous search procedure is defined by specifying values for parameters
γ and δ, which are used, respectively, in the sufficient reduction criterion and for
the expansion of the step. The main distinguishing feature of the Discrete search
procedure with respect to the Continuous search consists in the sufficient decrease
criterion that employs the decrease parameter ξ instead of the usual squared stepsize,
which, for a discrete variable, is bounded away from zero. Indeed, we say that the

Algorithm 1 MIDFO(ϕ,X,n, Iz, αtol, ϕtol)

Data. θ ∈ (0,1), x0 ∈ X, ξ0 > 0, α̃i
0 > 0, i ∈ Ic = {1, . . . , n} \ Iz, α̃i

0 = 1, i ∈ Iz, and
set di

0 = ei , for i = 1, . . . , n.

Repeat k = 0,1, . . .

Set y1
k = xk .

For i = 1, . . . , n

If i ∈ Ic then compute α by the Continuous search(ϕ, α̃i
k, y

i
k, d

i
k;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = θα̃i
k .

else set αi
k = α, α̃i

k+1 = α.

else compute α by the Discrete Search(ϕ, α̃i
k, y

i
k, d

i
k, ξk;α)

If α = 0 then set αi
k = 0 and α̃i

k+1 = max{1, �α̃i
k/2�}.

else set αi
k = α, α̃i

k+1 = α.

Set yi+1
k = yi

k + αi
kd

i
k and di

k+1 = di
k .

End For
If (yn+1

k)z = (xk)z and α̃i
k = 1, i ∈ Iz, then set ξk+1 = θξk else set ξk+1 = ξk .

Find xk+1 ∈ X ∩Z such that ϕ(xk+1) ≤ ϕ(yn+1
k).

Until (max{ξk+1,maxi∈Ic{αi
k, α̃

i
k+1}} ≤ αtol or ϕ(xk+1) ≤ ϕtol)

Return ϕ(xk+1) and xk+1.

J Optim Theory Appl (2015) 164:842–861 851

Procedure 3 Continuous search (ϕ, α̃, y, d;α)
Data. γ > 0, δ ∈ (0,1).
Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩Z . Set α = min{ᾱ, α̃}.
Step 2. If α > 0 and ϕ(y + αd) ≤ ϕ(y) − γ α2 then go to Step 6.
Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩Z . Set α = min{ᾱ, α̃}.
Step 4. If α > 0 and ϕ(y − αd) ≤ ϕ(y) − γ α2 then set d ← −d and go to Step 6.
Step 5. Set α = 0 and return.

Step 6. While (α < ᾱ and ϕ(y + α
δ
d) ≤ ϕ(y) − γ α2

δ2)
α ← α/δ.

Step 7. Set α ← min{ᾱ, α} and return.

Procedure 4 Discrete search (ϕ, α̃, y, d, ξ ;α)
Step 1. Compute the largest ᾱ such that y + ᾱd ∈ X ∩Z . Set α = min{ᾱ, α̃}.
Step 2. If α > 0 and ϕ(y + αd) ≤ ϕ(y) − ξ then go to Step 6.
Step 3. Compute the largest ᾱ such that y − ᾱd ∈ X ∩Z . Set α = min{ᾱ, α̃}.
Step 4. If α > 0 and ϕ(y − αd) ≤ ϕ(y) − ξ then set d ← −d and go to Step 6.
Step 5. Set α = 0 and return.
Step 6. While (α < ᾱ and ϕ(y + 2αd) ≤ ϕ(y) − ξ)

α ← 2α.
Step 7. Set α ← min{ᾱ, α} and return.

new trial point (y ± αd) yields a sufficient reduction of the objective function value
when its value is better than f (y) − ξ .

3.2 A Solution Approach and Approximate Calculation of f (v)

Solution of problem (6) is sought by applying algorithm MIDFO, namely, calling the
procedure

MIDFO
(
f,V,n1, Iz,10−4,−∞)

,

which generates sequences {ξk}, {f (vk)}, {αi
k+1}, and {α̃i

k} for i = 1, . . . , n. Let, for
each k ≥ 0,

f min
k = f (vk)

be the current minimum estimate of function f (v). At each iteration of algorithm
MIDFO applied to the solution of problem (6), we have to compute the value of f at
some given point v, that is, we should solve the following second-level problem

f (v) = max
w∈W⊂Rm

g(v,w). (9)

Hence, f (v) is given by

f (v) = g
(
v,w∗(v)

)
,

852 J Optim Theory Appl (2015) 164:842–861

where

w∗(v) = arg max
w∈W⊂Rm

g(v,w).

Even though, in principle, we would be interested in a global solution w∗(v) of prob-
lem (9), when dealing with computationally expensive real-world applications, we
can accept a reasonable approximation of the objective function f (v). Such an ap-
proximate value can be obtained by using, in place of f (v), the function

f̄ (v) = g
(
v,w(v)

)
,

where w(v) is a stationary point of problem (9).
Now, during the execution of the main optimization algorithm, when it is neces-

sary to compute the value of f corresponding to a given point v, we can make the
computation even more efficient. Indeed, we can again use algorithm MIDFO to solve
this “second-level” problem. Namely, we resort to the approximation

f̃k(v) = g
(
v, w̃k(v)

)
,

where w̃k(v) is computed by

MIDFO
(−g(v, ·),W,n2,∅, α

target
k , f

target
k

)

with

α
target
k = max

{
ξk,max

i∈Ic

{
αi

k−1, α̃
i
k

}}
and f

target
k = −f min

k .

It is worth noting that the quantities ξk , αi
k−1, α̃i

k , i ∈ Ic , and f min
k that define α

target
k

and f
target
k are known at the beginning of every iteration k of Algorithm MIDFO

applied to the solution of problem (6). Hence, as we can see, MIDFO stops when:

– either the stepsize parameter becomes smaller than α
target
k , that is, when the current

point is a “sufficiently” good approximation of a stationary point with respect to
the progress toward a solution of problem (6) as measured by α

target
k (see, e.g.,

[25]),
– or the second-level optimization reaches a value f̃ (vk) ≥ f min

k , that is, when it
is possible to conclude that the value of f̃k cannot improve the current minimum
estimate.

4 Numerical Results

4.1 Comparison on Analytical Test Problems

In this subsection, we carry out a comparison between the proposed derivative-free
method and the classical statistical method for the solution of the (semi-infinite) min-
imax robust optimization problem (6). To this purpose, we selected the following
seven functions from the Moré, Garbow, and Killstrom test-problem collection [26]:

J Optim Theory Appl (2015) 164:842–861 853

• Extended Powell Singular function;
• Extended Rosenbrock function;
• Penalty I function;
• Penalty II function;
• Trigonometric function;
• Variably dimensioned function;
• Watson function.

Then, we define the following problem:

min
v∈V

max
w∈W

g(v,w),

where V = {v ∈R
8 : −10 ≤ v ≤ 10} and W = {w ∈R

8 : −0.5 ≤ v ≤ 0.5}.
For each problem, we run our method and the statistical one starting from the same

ten different random points v ∈ V and allowing a maximum number of 5000 function
evaluations. Then, once a solution v∗ has been found, we evaluate its robustness by
sampling Np = 1000 random vectors w(i) ∈ W , i = 1, . . . ,Np , and computing

σ =
√√√√

∑Np

i=1(g(v∗,w(i)) − ḡ)2

Np

,

where

ḡ = 1

Np

Np∑

i=1

g
(
v∗,w(i)

)
.

Obviously, the smaller σ , the more robust the obtained solution, and the smaller σ +
ḡ, the better the obtained solution. We report the results by means of performance
profiles using as performance indices σ and σ + ḡ, respectively, in Fig. 1. From these
results we can conclude that the robust approach clearly outperforms the statistical
one.

4.2 The Robust Circuit Design Problem

The real circuit we want to design is a DC–DC converter. This electronic circuit is
commonly used to convert a source of direct current (DC) from one voltage level
to another and is very common in portable electronic devices (e.g., cellular phones
and laptop computers). Electronic devices contain subcircuits, each with its own volt-
age level requirement, which is different from that supplied by the battery. DC–DC
converters offer a method to increase voltage from a partially lowered battery volt-
age thereby saving space instead of using multiple batteries to accomplish the same
thing. We consider a DC–DC converter for AMOLED (Active-Matrix Organic Light-
Emitting Diode, a display technology widely used in mobile devices and televisions).
This circuit integrates two main components: a step up (output voltage is higher than
the input voltage) and an inverting DC–DC converter (output voltage is of the op-
posite polarity as the input). We are interested in the design of a specific part of the
circuit. In particular, we want to optimally design an integrated circuit formed by:

854 J Optim Theory Appl (2015) 164:842–861

Fig. 1 Comparison between the robust and the statistical approach in terms of σ and σ + ḡ

• A chain of 4 CMos inverter;
• the High Side (PMos) and the Low Side (NMos) output stage;
• the driving signals (N_UP, LX1).

The device we consider is a circuit for Pulse-width Modulation (PWM), which is a
commonly used technique for controlling power to electrical devices, made practical
by modern electronic power switches. The average value of voltage (and current) fed
to the load is controlled by turning the switch between supply and load on and off
at a fast pace. The longer the switch is on compared to the off periods, the higher
the power supplied to the load is. Roughly speaking, the Pulse-width Modulator is a
device that breaks up a DC voltage into pulses that can be changed to our needs. When
we change the width of the pulses, we are modulating them. This operation takes time
that has to be kept as low as possible, avoiding, in our case, both powers on at the same
time (i.e., we need to keep the signal delay low). In our case, the Step-Up PWM to
LX Delay is mostly responsible for turning on the rectifier diode. As a consequence,
the longer this delay is, the greater is the unwanted diode recirculating phase, hence
increasing power losses. We report the scheme of the circuit in Fig. 2. In this case,
the chain of 4 CMos Inverters is used as a Buffer that drives a large fan-out (the
power stage composed by the low-side NMos and the high-side PMos). The increase
in the load capacitance proportionally increases the propagation delay. Buffering with
multiple inverter is used to maintain the speed performance of the circuit. The devices
realized in an IC technology have to satisfy the design grid resolution, which means
that the width and length vary in a discrete way (i.e., with a step of 10 nm). In order
to avoid problems during the layout preparation (strange dimensions of devices), we
have chosen to fix the design variables to integer values that all refer to the width of
one device (W_M3, the width of PMos M3).

J Optim Theory Appl (2015) 164:842–861 855

F
ig

.2
Sc

he
m

e
of

th
e

in
te

gr
at

ed
ci

rc
ui

t

856 J Optim Theory Appl (2015) 164:842–861

Fig. 3 Circuit variables

What concerns the variables, we have:

• 8 Design Variables:
– K1, K2 , K3, K4: the scale factor between PMos and NMos (discrete);
– Mult2, Mult3, Mult4: the scale factor along the inverter chain (discrete);
– W_M3: the width of the last PMos inverter in the chain (continuous).
The first seven design variables (i.e., K1, K2 , K3, K4, Mult2, Mult3, Mult4) can
assume only the integer values (xd)i ∈ {1,2, . . . ,10}, i = 1, . . . ,7. The last vari-
able, W_M3, must satisfy the bound constraint 1.0 ≤ W_M3 ≤ 16.0.

We just want to remark that the width of a specific component in the chain
can be easily obtained by the width of the last PMos (e.g., W_M4 = W_M3/K4,
W_M6 = W_M3/Mult4, . . .).
The design variables are reported in Fig. 3.

• 2 Operating Variables:
– V, T: supply voltage and temperature (continuous).

• 9 Statistical Variables (continuous): The statistical variables involved in our ex-
ample are related to 44 Nmos And Pmos devices, but after a sensitivity analysis,
35 of them were screened out. The nine remaining variables, with a Gaussian dis-
tribution centered around the mean value 0 and a standard deviation 1, are:
– dtox5v: represents the oxide thickness relative variation;
– dvthn5v: represents the threshold voltage of the N channel with respect to the

nominal value;

J Optim Theory Appl (2015) 164:842–861 857

Table 1 Performance
specifications Performance LB UB

Delay1 0.0 n 21.0 n

Delay2 0.0 n 21.0 n

DelaySymmetry 0.0 n 3.15 n

Fig. 4 Performance features

– dvthp5v: represents the threshold voltage of the P channel with respect to the
nominal value;

– dmobn5v: represents the N channel mobility relative variation;
– dmobp5v: represents the P channel mobility relative variation;
– dw: represents the Poly width with respect to nominal width;
– dl: represents the Poly length with respect to nominal length;
– dvthndmos: represents the threshold voltage of the Ndmos with respect to the

nominal value;
– drdhvpw: represents the DHV-PWell sheet resistance.
All of the statistical variables must satisfy the bound constraints −3.0 ≤ (xp)i ≤
3.0, i = 1, . . . ,9.

We then consider m = 3 different performance features describing the delays of
our circuit (see Figs. 2 and 4):

• Delay1: it represents the propagation delay between the signals V(N_UP) and
V(LX1) when V(N_UP) is rising above the VTH1 threshold and V(LX1) is falling
below the VTH2 threshold;

• Delay2: it represents the propagation delay between the signals V(N_UP) and
V(LX1) when V(N_UP) is falling below the VTH1 threshold and V(LX1) is rising
above the VTH2 threshold;

• Delay Symmetry: it is defined as |Delay1 − Delay2|.
In Table 1, we report the performance specification features that we use.

858 J Optim Theory Appl (2015) 164:842–861

4.3 The Optimization Process

Starting from the initial design defined by IC experts, which is

x̃d = (5, . . . ,5,8.5)�,

we first execute the Nominal Design Optimization by solving problem (1) with q = 1,
where x̄o are fixed to the typical values (TYP), and x̄p are all fixed to zero. We tackled
the problem by means of the MIDFO algorithm described in [14]. Let us denote the
solution of problem (1) by

x̄d = (9,1,10,1,10,10,10,1.0)�.

Starting from this point, we perform the second phase optimization (i.e., the Worst-
Case optimization). In the second phase, we first solve problems (2) and compute the
worst-case operating variables x̄0,j , which are as follows:

• TYP. Typical operating conditions: Temperature = 27 ◦C and Voltage = 2.3 V.
• WC1. Worst-case operating condition 1, obtained by maximizing Delay1 or

Delay2: Temperature = 120 ◦C and Voltage = 2.3 V.
• WC2. Worst-case operating condition 2, obtained by maximizing DelaySymmetry:

Temperature = 120 ◦C and Voltage = 4.8 V.
• WC3. Worst-case operating condition 3, obtained by minimizing DelaySymmetry:

Temperature = −40 ◦C and Voltage = 2.3 V.
• WC4. Worst-case operating condition 4, obtained by minimizing Delay1 or

Delay2: Temperature = −40 ◦C and Voltage = 4.8 V.

Then, we solve the Worst-Case Optimization problem (3), that is,

min
xd

l∑

j=1

m∑

i=1

max
{
0, li − pi(xd, x̄o,j , x̄p)

} + max
{
0,pi(xd, x̄o,j , x̄p) − ui

}
, (10)

where l = 5, xo,j with j = 1, . . . ,4 are fixed to the WCj operating conditions, xo,5
is fixed to the TYP operating condition, and xp are all fixed to zero. Once again, we
tackled the problem by means of the MIDFO algorithm described in [14]. Solving
problem (10) gives us the solution point

x̂d = (2,2,2,2,4,4,4,6.4)�,

which is used as a starting point for the last phase (i.e., the Yield Optimization).

The Yield Optimization phase was carried out by means of two different ap-
proaches, namely:

(1) the Statistical Approach, described in Sect. 2, which is a reasonable and widely-
used method for statistical custom IC design [5, 27];

(2) the Derivative-Free Robust Approach we developed in Sect. 2 (where we used
the MIDFO algorithm to approximately solve the robust design problem).

J Optim Theory Appl (2015) 164:842–861 859

Table 2 Comparison between statistical and robust approaches

Algorithm nf T WC1 WC2 WC3 WC4 ALL

Statistical 107000 0.869 0.700 0.654 0.999 1.0 0.578

Robust 47780 0.913 0.804 0.975 1.0 1.0 0.880

Robust* 46770 0.928 0.879 0.643 0.998 1.0 0.542

In the statistical approach, we solve problem (4) where ns = 200 and l = 5 by
means of Algorithm MIDFO. Hence, ns × l = 1000 function evaluations are needed
at each iteration; this gives the final point

x∗
stat = (1,3,2,2,8,5,5,15.9777)�.

In the robust approach, we solve problem (5) where we set l = 5, and, as for
the approximate calculation of the objective function f (v) (defined as in (7)), the
algorithm stops when the maximum stepsize is smaller than or equal to the given
tolerance 10−4 or the number of Black-Box evaluations reaches 20000. This approach
returns the solution point

x∗
robust = (1,2,2,3,7,5,6,14.8)�.

We also tried to solve problem (5) by means of the proposed algorithm but con-
sidering all of the design variables to be continuous and then rounding the first seven
variables of the solution point to the nearest integer value. This alternative strategy,
which we call Robust*, to deal with the integrality constraints has produced the point

x∗
rounded = (1,4,2,2,8,4,5,14.5)�.

To compare the solutions obtained by means of the three approaches, we evaluated
the yield at typical and worst-case operating conditions for all of them on a normally
distributed sample with ns = 1000 elements:

x(μ)
p , μ = 1, . . . , ns.

In Table 2, we report the results in terms of yield obtained using the Statistical, Ro-
bust, and Robust* approaches. We indicate with nf the number of function evalua-
tions obtained by summing up all the function evaluations made in the solution of
the inner level optimization problem, with TYP the yield at typical condition (i.e.,
the percentage of samples that satisfy all specifications at TYP operating conditions),
with WCj , j = 1, . . . ,4, the yield at worst-case conditions and with ALL the total
yield of the circuit (i.e., the percentage of samples that satisfy all specifications at all
conditions).

As we can easily see from the table, the Robust approach can guarantee a result,
in terms of total yield, better than the one obtained by both Statistical and Robust*
approaches. In terms of the number of function evaluations, the Robust and Robust*
approaches perform comparably to each other but are sensibly more efficient than
the Statistical approach. We stress the fact that the result obtained by the Robust*

860 J Optim Theory Appl (2015) 164:842–861

Fig. 5 Comparison between
robust and statistical approaches

approach (giving a total yield of 0.542) is largely worse than that obtained by the
Robust approach (which gives a total yield of 0.88).

In Fig. 5, in order to see the progress of the Robust and Statistical approaches, we
further report the plots of function value f (v) as functions of the number of function
evaluations.

5 Conclusions

In the paper, we were concerned with the optimal design of a DC–DC converter of the
kind commonly used in electronic portable devices. We discussed the three phases
that compose the optimization process and in particular the Yield optimization, in
which the manufacturing yield (percentage of manufactured circuits that satisfy the
performance specifications when varying statistical variables) is to be optimized. We
showed two alternative strategies to deal with the Yield optimization, and, in particu-
lar, we show how it can be reformulated as a robust optimization problem. Then, we
introduced a novel derivative-free mixed-integer algorithmic framework for the solu-
tion of the latter robust optimization problem. The framework is based on the use of
the derivative-free linesearch method for bound constrained mixed-integer problem
proposed in [14].

We reported the results obtained by using the proposed algorithmic framework
and compared them with those obtained by:

– a Statistical approach to solve the yield optimization problem;
– a rounding scheme to deal with integer design variables.

We showed that the proposed method outperforms both the Statistical approach and
the rounding scheme in terms of the total yield.

J Optim Theory Appl (2015) 164:842–861 861

References

1. Conn, A., Vicente, L.N., Visweswariah, C.: Two-step algorithms for nonlinear optimization with struc-
tured applications. SIAM J. Optim. 9(4), 924–947 (1999)

2. Boyd, S.P., Kim, S.J., Patil, D.D., Horowitz, M.A.: Digital circuit optimization via geometric pro-
gramming. Oper. Res. 53(6), 899–932 (2005)

3. Patil, D., Yun, S., Kim, S.J., Cheung, A., Horowitz, M., Boyd, S.: A new method for design of robust
digital circuits. In: Proceedings of the International Symposium on Quality Electronic Design, pp.
676–681 (2005)

4. Mintarno, E., Skaf, J., Zheng, R., Velamela, J., Cao, Y., Boyd, S., Dutton, R., Mitra, S.: Optimized
self-tuning for circuit aging. Proc. Des. Autom. Test. Eur. 5(7), 586–591 (2009)

5. Graeb, H.: Analog Design Centering and Sizing. Springer, Dordrecht (2007)
6. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)
7. Ben-Tal, A., Nemirovski, A.: Robust optimization. Methodology and applications. Math. Program.

92(3), 453–480 (2003)
8. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1-3),

49–71 (2003)
9. Bertsimas, D., Sim, M.: Tractable approximations to robust conic optimization problems. Math. Pro-

gram. 107(1–2), 5–36 (2006)
10. Bertsimas, D., Nohadani, O., Teo, K.: Robust optimization in electromagnetic scattering problems.

J. Appl. Phys. 101(7), 074,507 (2007)
11. Bertsimas, D., Nohadani, O., Teo, K.: Robust optimization for unconstrained simulation-based prob-

lems. Oper. Res. 58(1), 161–178 (2010)
12. Bertsimas, D., Nohadani, O., Teo, K.: Nonconvex robust optimization for problems with constraints.

INFORMS J. Comput. 22(1), 44–58 (2010)
13. Conn, A., Vicente, L.: Bilevel derivative-free optimization and its application to robust optimization.

Optim. Methods Softw. 27, 561–577 (2012)
14. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for bound constrained mixed-integer opti-

mization. Comput. Optim. Appl. 53(2), 505–526 (2012)
15. Abramson, M., Audet, C., Chrissis, J., Walston, J.: Mesh adaptive direct search algorithms for mixed

variable optimization. Optim. Lett. 3(1), 35–47 (2009)
16. Abramson, M., Audet, C., Dennis, J. Jr.: Filter pattern search algorithms for mixed variable con-

strained optimization problems. Pac. J. Optim. 3(3), 477–500 (2007)
17. Audet, C., Dennis, J. Jr.: Pattern search algorithms for mixed variable programming. SIAM J. Optim.

11(3), 573–594 (2001)
18. Audet, C., Dennis, J. Jr.: A pattern search filter method for nonlinear programming without derivatives.

SIAM J. Optim. 14(4), 980–1010 (2004)
19. Audet, C., Dennis, J. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM

J. Optim. 17(1), 188–217 (2006)
20. Vicente, L.N., Custódio, A.L.: Analysis of direct searches for discontinuous functions. Math. Pro-

gram. 133, 299–325 (2012)
21. Lewis, R., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM J. Op-

tim. 9(4), 1082–1099 (1999)
22. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
23. Liuzzi, G., Lucidi, S., Sciandrone, M.: A derivative-free algorithm for linearly constrained finite min-

imax problems. SIAM J. Optim. 16(4), 1054–1075 (2006)
24. Hare, W., Nutini, J.: A derivative-free approximate gradient sampling algorithm for finite minimax

problems. Comput. Optim. Appl. (2013). doi:10.1007/s10589-013-9547-6
25. Kolda, T., Lewis, R., Torczon, V.: Optimization by direct search: new perspectives on some classical

and modern methods. SIAM Rev. 45(3), 385–482 (2003)
26. Moré, J., Garbow, B., Hillstrom, K.: Testing unconstrained optimization software. ACM Trans. Math.

Softw. 7(1), 17–41 (1981)
27. Chen, W.K. (ed.): The Circuits and Filters Handbook, 2nd edn. CRC Press, Boca Raton (2003)

http://dx.doi.org/10.1007/s10589-013-9547-6

	Derivative-Free Robust Optimization for Circuit Design
	Abstract
	Introduction
	Robust Optimization for Circuit Design
	Nominal Design Optimization
	Worst-Case Optimization
	Yield Optimization

	A Derivative-Free Algorithm for Robust Optimization
	The Derivative-Free Optimization Algorithm
	A Solution Approach and Approximate Calculation of f(v)

	Numerical Results
	Comparison on Analytical Test Problems
	The Robust Circuit Design Problem
	The Optimization Process

	Conclusions
	References

