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Abstract. In this paper we are concerned with the problem of optimally designing
three-phase induction motors. This problem can be formulated as a mixed variable
programming problem. Two different solution strategies have been used to solve
this problem. The first one consists in solving the continuous nonlinear optimization
problem obtained by suitably relaxing the discrete variables. On the opposite, the
second strategy tries to manage directly the discrete variables by alternating a
continuous search phase and a discrete search phase. The comparison between
the numerical results obtained with the above two strategies clearly shows the
fruitfulness of taking directly into account the presence of both continuous and
discrete variables.
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1 Introduction

Three-phase induction motors are widely used in industrial applications, and have
a significant impact on electricity consumption.

The European Committee of Manufacturers of Electrical Machines and Power
Electronics and the European Commission stated a joint classification scheme that
will enable customers and users of induction motors to have a simple efficiency
ranking of these components. The classification scheme has only three efficiency
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classes, namely a “standard efficient” (eff1), an “energy efficient” (eff2) and a “high
(premium) efficient” (eff3) class.

This classification needs to develop new ranges of motors. The design of “high
efficiency” induction motors requires the use of specific optimization techniques.
The growing demand of high-performance motors requires the definition of more
and more efficient designs. The only way to obtain such kinds of motors is to use
automatic optimization procedures along with the definition of an analytical model
of the motor itself. Such a model can be obtained by reducing the physical descrip-
tion of the motor to an equivalent representation as resistances and inductances
[2]. The adopted analytical model takes into account the influence of saturation on
stator and rotor reactances, the influence of skin effect on rotor parameters and the
effects of the temperature raising on motor resistances.

In Sect. 2 we describe the optimal design problems which arise in the design
of induction motors. Such problems can be naturally stated as mixed-variable pro-
gramming problems. Section 3 is devoted to a continuous approach used for solving
the problem. In Sect. 4 we introduce the mixed-variable programming algorithm
which has been used to tackle the optimal design problem. Finally, in Sect. 5 we
describe the results obtained by using the mixed-variable approach.

In the paper we denote by | · | the cardinality of a set.

2 Problem description

The optimal design of electric motors requires particular attention in the choice
of the objective function that usually concerns economic or performance features.
In order to cover both these aspects of the design problem, we have chosen two
objective functions that can affect the design optimization of three-phase induction
motors. Particularly:

f (1): Manufacturing cost in Euros (to be minimized);
−f (2): Rated efficiency (to be maximized).

The induction motor is completely determined by the following independent
variables which define the stator and rotor dimensions. They are:

the stator slot height in mm (x1)
the stator tooth width in mm (x2)
the rotor slot height in mm (x3)
the rotor tooth width in mm (x4)
the air-gap length in mm (x5)
the air-gap flux density in Tesla (x6)

the stack length in mm (y2)
the outer stator diameter in mm (y3)
the stator wire size in mm2 (y4)

the electrical steel type (t)
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Our aim is to design a motor without affecting heavily the tooling costs and the
building process. For this reason some of the above quantities should assume a finite
number of values. This is essentially due to the fact that the preexistent lamination
punch tools or stator housing tools allow to handle only some prefixed values of the
independent variables. Obviously, if we want to change all motor dimensions and
renew the lamination tooling, then these kind of limitations can be neglected. In the
former case however, the corresponding variables must be considered as discrete
variables whose feasible values are related to the base components availability and
to the limitations of the existing manufacturing process. As for the continuous vari-
ables, their values must be within given bounds which are connected to mechanical
and technological constraints, according to the manufacturer suggestions.

The variable t represents the electric steel type that plays a significant role on
the motor performance: its right choice, combined with the design optimization
of the motor, should allow to achieve better results and higher efficiency. The
choice of a “suitable” electric steel type depends on several aspects such as cost,
workability, “business tradition” and storehouse demands. In this study six “fully
processed” commercial steels have been considered, labelled with 0, 1, ..5 (where
t = 0 represents an “high performance” and “high cost” steel type while t = 5
represents a “low performance”, “low cost” steel type).

Beside the bound constraints on the variables, the problem involves also some
nonlinear constraints which concern mainly the motor performances. In particular,
they are: the stator winding temperature, the rotor bars temperature, the flux density
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in the stator and rotor teeth, the rated slip, the starting torque, the starting current,
the breakdown torque, the power factor at rated load and the stator slot fullness.

Finally, depending on the choice of the objective function (f (l), l = 1, 2), we
come up with the following mixed variable programming problems for a 7.5 kW,
4 pole, 380 V, 50 Hz, three-phase induction motor,

min
x,y,t

f (l)(x, y, t)

g(x, y, t) ≤ 0

16.0 ≤ x1 ≤ 19.0

4.5 ≤ x2 ≤ 6.5

16.0 ≤ x3 ≤ 18.5

3.5 ≤ x4 ≤ 5.0

0.3 ≤ x5 ≤ 0.5

0.5 ≤ x6 ≤ 0.68

y1 ∈ {126.6, 131.6}
y2 ∈ {140, 150, 160, 170, 180, 190}
y3 ∈ {180, 200, 220}
y4 ∈ {1.4, 1.45, 1.5, 1.55, 1.5727, 1.6, 1.65, 1.7, 1.75}
t ∈ {0, 1, 2, 3, 4, 5},

(P l)

where x = (x1 x2 x3 x4 x5 x6)
T and y = (y1 y2 y3 y4)

T .
The distinguishing features of these problems are reported below.

(i) To evaluate the objective and constraint functions on a given point, it is neces-
sary to perform a numerical simulation of the motor operating status. For this
reason, an explicit representation of the objective and constraint functions is
not available.

(ii) The constraints g(x, y, t) ≤ 0 are not very restrictive, namely, it is relatively
easy to find a feasible point and to remain in the feasible region.

(iii) y and t can assume only a finite number of values. In particular, the discrete vari-
able t affects the structure of the objective and constraint functions. Moreover,
it cannot assume any intermediate value since for such values the corresponding
optimization problem is undefined.

Taking into account property (ii), we can transform Problem (P l) using a stan-
dard technique to eliminate the nonlinear constraints (see, for instance, [5]). In
particular, we use these new objective functions.

f̃ (l)(x, y, t) =
{

f (l)(x, y, t) if g(x, y, t) ≤ 0

+∞ otherwise
l = 1, 2.
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Hence we consider problems

min
x,y,t

f̃ (l)(x, y, t)

lx ≤ x ≤ ux

yi ∈ Yi, i = 1, 2, 3, 4

t ∈ T ,

(P̃ l)

for l = 1, 2, where

lx =




16.0

4.5

16.0

3.5

0.3

0.5




ux =




19.0

6.5

18.5

5.0

0.5

0.68




and

Y1 = {126.6, 131.6}
Y2 = {140, 150, 160, 170, 180, 190}
Y3 = {180, 200, 220}
Y4 = {1.4, 1.45, 1.5, 1.55, 1.5727, 1.6, 1.65, 1.7, 1.75}
T = {0, 1, 2, 3, 4, 5}.

3 Continuous approach

A first attempt consists in solving the following nonlinear continuous optimization
problems

min
x,y

f̃ (l)(x, y, t)|t=h

lx ≤ x ≤ ux

ly ≤ y ≤ uy,

(R̃l
h)

for l = 1, 2, obtained by setting t = h, for all h = 0, 1, . . . , 5 and relaxing, in a
suitable way, the discrete variables y and where

ly =




126.6

140.0

180.0

1.4


 uy =




131.6

190.0

220.0

1.75


 .
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Problems (R̃l
h) for h = 0, 1, . . . , 5 and l = 1, 2 can be rewritten as

min
z

ϕ(z)

lz ≤ z ≤ uz,
(1)

where z = (x, y) ∈ �nz , lz = (lx, ly) and uz = (ux, uy).
By property (i) of Problem (P l), an explicit representation of ϕ(z) is not avail-

able. Hence, to solve Problem (1) we applied the derivative free algorithm proposed
in [4] whose description is reported below.

Procedure DFA(z◦, αtol)

Data. α◦ > 0.

1. Set j = 1.
2. Apply procedure DF(nz, z

j , αj−1, zj+1, αj ).
3. If αj > αtol then set j := j + 1 and go to Step 2.

else return (zj+1, αj ).

We refer to [4] for the theoretical analysis of Procedure DFA.

Procedure DF(nz, z, µ
0, z̃, µ)

Data. γ > 0, δ ∈ (0, 1), δ1 ∈ (0, 1), θ ∈ (0, 1), di = ei and α̃i = µ0 for
i = 1, . . . , n.

1. Initialization: Set i = 1 and zi = z.
2. Direction choice:

2.1 Compute αi
max s.t. zi + αi

maxd
i = ui

z and set α = min{α̃i , αi
max}.

If α > 0, ϕ(zi + αdi) ≤ ϕ(zi) − γ (α)2,
then go to Step 4.

2.2 Compute αi
max s.t. zi − αi

maxd
i = liz and set α = min{α̃i , αi

max}.
If α > 0, ϕ(zi − αdi) ≤ ϕ(zi) − γ (α)2,
then set di = −di and go to Step 4.

3. Direction failure: Set ᾱ = 0, α̃i = θα, and go to Step 5.
4. Linesearch:

4.1 Let α̂ = min{αi
max,

α
δ
}.

If α = αi
max or ϕ(zi + α̂di) > ϕ(zi) − γ α̂2,

then set ᾱ = α, α̃i = α and go to Step 5.
4.2 Set α = α̂ and go to Step 4.1.

5. New point: Set zi+1 = zi + ᾱdi .
6. Stopping criterion: If i = nz, then z̃ = zi+1, µ = maxi=1,...,n{α̃i , δ1µ

0}
else set i = i + 1 and go to Step 2.
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Every problem has been solved starting from the initial point z◦ = (x◦, y◦)
where

x◦ =




17.5

5.5

17.8

4.0

0.4

0.5682




y◦ =




126.6

160.0

200.0

1.5727


 .

that, for t◦ = 1 represents a reference motor and whose objective function values
are listed in the table below.

t◦ f̃ (1)(x◦, y◦, t◦) f̃ (2)(x◦, y◦, t◦)

0 179.174 −86.08%
1 174.396 −88.30%
2 169.547 −87.68%
3 164.691 −86.85%
4 159.840 −87.55%
5 154.943 −84.87%

Initial function values.

In the tables below we report the results obtained by using this strategy. In
particular, in Table 1, for every value of the discrete variable t , we report the
solution points of problems (R̃1

h) for h = 0, 1, . . . , 5, along with their associated
objective function values (manufacturing cost). It emerges that the best solution is
obtained when t = 5 (low-cost electrical steel). In Table 2, again, we report the
solution points of problems (R̃2

h) for h = 0, 1, . . . , 5, along with their objective
function values (rated efficiency) for every value of the discrete variable t . In this
case, it emerges that the best solution is obtained when t = 1 (high-performance
electrical steel).

Table 1. Solutions for Problem (R̃1
h

), h = 0, . . . , 5

t 0 1 2 3 4 5

x1 16 16.005 16 16.016 16.021 16.016
x2 6.5 6.5 6.5 5.879 6.5 6.5
x3 16.519 16 16 16.8 16 16.175
x4 4.016 4.016 4 4 4.508 4.062
x5 0.4 0.4 0.4 0.4 0.4 0.4
x6 0.584 0.568 0.568 0.568 0.568 0.568
y1 126.6 126.631 126.6 126.698 126.675 126.784
y2 140 140 142.891 140 154.58 151
y3 194.951 189.656 191.375 189.5 189.5 189.5
y4 1.5102 1.4 1.4 1.5727 1.4 1.5723

cost 165.054 156.603 154.551 152.82 147.945 146.571
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Table 2. Solutions for Problem (R̃2
h

), h = 0, . . . , 5

t 0 1 2 3 4 5

x1 16 16 16 16 16 16
x2 6.5 6.5 6.5 5.812 6.5 6.5
x3 18.5 18.5 18.5 18.5 18.5 18.5
x4 3.922 3.767 3.99 3.914 3.702 3.802
x5 0.319 0.3 0.354 0.337 0.3 0.356
x6 0.568 0.568 0.567 0.568 0.568 0.566
y1 126.6 131.596 127.476 128.35 129.334 126.6
y2 158.859 158.25 163.109 161.773 155.873 169.594
y3 220 220 220 220 220 220
y4 1.75 1.75 1.75 1.75 1.75 1.75

efficiency 89.14% 91.14% 90.15% 89.39% 90.56% 88.07%

One possible way to obtain feasible points for the original problems (P l), l =
1, 2, starting from the optimal solutions of problems (R̃l

h), l = 1, 2, h = 0, 1, . . . , 5,
consists in searching for the best rounded neighbors of the continuous solutions.
In the following tables we report the best rounded neighbors of the solutions of
problems (R̃l

h), h = 0, . . . , 5 and l = 1, 2.

Table 3. Best rounded neighbors for Problem (P 1)

t 0 1 2 3 4 5

x1 16 16.005 16 16.016 16.021 16.016
x2 6.5 6.5 6.5 5.879 6.5 6.5
x3 16.519 16 16 16.8 16 16.175
x4 4.016 4.016 4 4 4.508 4.062
x5 0.4 0.4 0.4 0.4 0.4 0.4
x6 0.584 0.568 0.568 0.568 0.568 0.568
y1 126.6 131.6 126.6 131.6 126.6 126.6
y2 140 140 140 140 160 160
y3 200 200 200 200 200 200
y4 1.5 1.4 1.4 1.5727 1.4 1.55

cost 168.047 162.765 158.358 158.199 154.783 153.062

We note that this rounding strategy carries to a worsening of the objective
function value and in one case even to the impossibility to get a feasible point
(as pointed out by the ’-’ sign in Table 4), namely a point satisfying the nonlinear
constraints. In particular, as concerns the manufacturing cost, for t = 5, it increases
from 146.571 to 153.062 Euros.

As regards the rated efficiency, the situation is more stable in the sense that the
efficiency of the rounded points is not so distant from the continuous ones but for
t = 5 this strategy does not produce any feasible point. This stability is probably
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Table 4. Best rounded neighbors for Problem (P 2)

t 0 1 2 3 4 5

x1 16 16 16 16 16 –
x2 6.5 6.5 6.5 5.812 6.5 –
x3 18.5 18.5 18.5 18.5 18.5 –
x4 3.922 3.767 3.99 3.914 3.702 –
x5 0.319 0.3 0.354 0.337 0.3 –
x6 0.568 0.568 0.567 0.568 0.568 –
y1 126.6 126.6 126.6 131.6 126.6 –
y2 160 160 160 170 160 –
y3 220 220 220 220 220 –
y4 1.75 1.75 1.75 1.75 1.75 –

efficiency 89.12% 90.96% 90.02% 89.33% 90.46% –

due to the fact that the continuous solutions have two out of four variables (y3 and
y4) which assume a discrete value.

4 A mixed-variable programming algorithm

Problem (P̃ l) is a mixed variable programming problem. The presence of both
continuous and discrete variables requires a suitable definition of a local minimum
point, which is not immediate. In fact this notion refers to the behavior of the objec-
tive function in a “suitable neighborhood” of a given point. While a neighborhood
of a continuous variable is well represented by a continuous ball, the neighbor-
hood of a discrete variable must be defined taking into account the structure of the
particular problem.

Following Audet and Dennis ([1]), we can characterize a local solution
(x∗, y∗, t∗) of Problem (P̃ l) as a point satisfying the following definition:

Definition 1 A feasible point (x∗, y∗, t∗) is said to be a local minimizer of Problem
(P̃ l) with respect to the feasible discrete neighborhood N (x∗, y∗, t∗) if there exists
an ε > 0 such that ∀(x̂, ŷ, t̂ ) ∈ N (x∗, y∗, t∗)

f̃ (l)(x∗, y∗, t∗) ≤ f̃ (l)(x, ŷ, t̂) ∀x ∈ B(x̂, ε) ∩ [lx, ux] , (2)

where N (x∗, y∗, t∗) is a finite set of feasible points.

This definition implies that there are no better feasible solutions in the balls
centered at the points belonging to the discrete neighborhood of (x∗, y∗, t∗). Note
that this definition depends on the choice of the discrete neighborhoods, which
hence represent a measure of the quality of the solution. In fact, a larger discrete
neighborhood N (x∗, y∗, t∗) should give a better local minimizer, but this may
increase the computational effort needed to locate the solution, so there is a trade
off.
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In [3] it has been introduced an algorithm for solving mixed variable program-
ming problems based on the combination of a local search with respect to the
continuous variables and of a local search in the discrete neighborhood of the cur-
rent point. This algorithm has been applied to the solution of Problem (P̃ l). In
particular, it is based on the idea to alternate two phases:

- an attempt to update the continuous variables by a local continuous search
(Phase 1) in [lx, ux],

- an attempt to update the discrete variables by a local search in the discrete
neighborhood of the current point (Phase 2).

Phase 1:
Given the current feasible point (xk, yk, tk), the discrete variables are fixed to the
value (yk, tk) and the following continuous optimization problem is considered:

min
x

f̃ (l)(x, yk, tk) (3)

lx ≤ x ≤ ux.

Starting from xk , we perform an iteration of a derivative free local continuous
search with the goal of finding a new vector x̃k which is, roughly speaking, a better
approximation of a stationary point of Problem (3).

Phase 2:
In this phase we try to update the discrete variables by considering the points be-
longing to the discrete neighborhood N (x̃k, yk, tk) of the point (x̃k, yk, tk) produced
by Phase 1.

First, we simply evaluate the objective function at the points belonging
to N (x̃k, yk, tk). If one of these points produces a sufficient decrease from
f̃ (l)(x̃k, yk, tk), then it becomes the current point, and a new iteration is performed.

If none of the points belonging to N (x̃k, yk, tk) produces a sufficient decrease
with respect to f̃ (l)(x̃k, yk, tk), we perform a further investigation, by selecting
some of these points which can be considered promising. In particular, we still try
to update the discrete variables by selecting some points belonging to N (x̃k, yk, tk)

with objective value not significantly worse than f̃ (l)(x̃k, yk, tk). Starting from each
one of these points, we perform a suitable number of local continuous searches with
the aim to obtain a point which produces a sufficient decrease from f̃ (l)(x̃k, yk, tk).

The proposed algorithm model is formally stated as follows:
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Mixed Integer Variable Algorithm Model (MIVAM)

Data: y◦
i

∈ Yi , i = 1, . . . , 4, t◦ ∈ T , x◦ ∈ [lx , ux ], ξ ≥ 0, θ ∈ (0, 1), η0 > 0, µin > 0.

Step 0: Set k = 0, µ0
k

= µin.

Step 1: Compute x̃k and µk by applying Procedure DF(nx, xk, µ0, x̃k, µk) to Problem (1)
where
ϕ(z) = f̃ (l)(x, y, t)|y=yk, t=tk and z = x. Set µ0

k+1 = µk .

Step 2: If there exists a (x̂k+1, ŷk+1, t̂k+1) ∈ N (x̃k, yk, tk) such that

f̃ (l)(x̂k+1, ŷk+1, t̂k+1) ≤ f̃ (l)(x̃k, yk, tk) − ηk,

set xk+1 = x̂k+1, yk+1 = ŷk+1,tk+1 = t̂k+1, ηk+1 = ηk , and go to Step 5.

Step 3: Define Wk = {(x, y, t) ∈ N (x̃k, yk, tk) : f̃ (l)(x, y, t) ≤ f̃ (l)(x̃k, yk, tk) + ξ}.
3.1: If Wk 
= ∅, choose (x′, y′.t ′) ∈ Wk , set j = 1, xj = x′, µj−1 = µk .

Otherwise go to Step 4.
3.2: Compute xj+1 and µj by applying Procedure DF(nx, xj , µj−1, xj+1, µj ) to

Problem (1) where ϕ(z) = f̃ (l)(x, y, t)|y=y′, t=t ′ and z = x.

3.3: If f̃ (l)(xj+1, y′, t ′) ≤ f̃ (l)(x̃k, yk, tk) − ηk , set xk+1 = xj+1, yk+1 = y′,
tk+1 = t ′, ηk+1 = ηk , and go to Step 5.

3.4: If µj > µk , set j = j + 1, and go to 3.2.

Otherwise set Wk = Wk \ {(x′, y′, t ′)}, and go to 3.1.
Step 4: Set xk+1 = x̃k , yk+1 = yk , tk+1 = tk .

If f̃ (l)(xk+1, yk+1, tk+1) ≤ f̃ (l)(xk, yk, tk) − ηk, set ηk+1 = ηk .

Otherwise set ηk+1 = θηk .

Step 5: Set k = k + 1, and go to Step 1.

At Step 1 Phase 1 is performed by applying the local continuous search
DF(nx, xk, µ

0
k, x̃k, µk). This procedure tries to produce a new point x̃k , where

the objective function is sufficiently decreased. In particular, if the procedure DF
is not able to produce a sufficient decrease of the objective function, the point x̃k is
set equal to xk .

Phase 2 is performed in Steps 2 and 3. In particular, at Step 2 the objective
function is evaluated at each point in N (x̃k, yk, tk). If one of these points produces
a decrease with respect to f (x̃k, yk, tk) greater or equal to ηk , then it becomes the
current point and a new iteration is performed. Otherwise the discrete neighborhood
is further investigated in Step 3. In particular, a set Wk ⊆ N (x̃k, yk, tk) of points
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with objective value not significantly worse than f (x̃k, yk, tk) is selected. Each of
these points (x′, y′, t ′) ∈ Wk is considered promising, and the algorithm tries to
determine if it is worth replacing yk with y′. In particular, starting from each point
(x′, y′, t ′) ∈ Wk , the local continuous search is repeated until

(a) it finds a point significantly better than (x̃k, yk, tk), or
(b) the test at Step 3.4 fails.

In case (a), the new point becomes the current iterate (with new discrete variables
y′, t ′), and a new iteration is performed. In case (b), we reject the discrete variables
y′, t ′ because a sufficient decrease of the objective function has not been achieved.

At Step 4 the point (x̃k, yk, tk) becomes the new current point and, if neither
the local continuous search nor the discrete search have been able to produce a
decrease of the objective function greater or equal to ηk , then this parameter is
reduced before starting the next iteration.

For an analysis of the theoretical properties of Algorithm MIVAM we refer to
[3] where global convergence of algorithm MIVAM toward a stationary point of the
mixed variable problem is proved provided that the objective function is smooth
with respect to the continuous variables.

5 Numerical results

In this section we report the numerical results obtained by applying algorithm
MIVAM (described in the previous section) to problems (P l), l = 1, 2. To use this
strategy it is necessary to define the discrete neighborhood of a given feasible point
and the searching strategy within this neighborhood. In particular, we have used
five different neighborhood definitions and two different search rules.
Given a feasible point, we only allow each component of the discrete variables
to change from their actual values either to the previous or to the next ones. If a
discrete variable is on its upper bound, the next value is assumed to be its lower
bound. Conversely, if a discrete variable is on its lower bound, the previous value is
assumed to be its upper bound. The continuous variables are left unchanged, unless
the resulting point is unfeasible, in which case they are randomly generated in such
a way to guarantee feasibility.

More precisely, let

Yi = {y1
i , . . . , y

|Yi |
i }, i = 1, 2, 3, 4

T = {t1, . . . , t |T |},
be the sets defined in Sect. 2. We introduce the following bijective functions σi :
Yi �→ {1, 2, . . . , |Yi |}, i = 1, . . . , 4 and σt : T �→ {1, 2, . . . , |T |} such that

σi(y
h
i ) = h (4)

σt (t
h) = h. (5)
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Now, given a feasible point w = (x, y, t), we consider the set S(w) = {ŵ =
(x̂, ŷ, t̂ )} where x̂, ŷ, t̂ are such that


|σi(ŷi) − σi(yi)| ≤ 1 if 1 < σi(yi) < |Yi |
σi(ŷi) = |Yi | if σi(yi) = 1

σi(ŷi) = 1 if σi(yi) = |Yi |
(6)




|σt (t̂) − σt (t)| ≤ 1 if 1 < σt(t) < |T |
σt (t̂) = |T | if σt (t) = 1

σt (t̂) = 1 if σt (t) = |T |
(7)

We define the distance d(w, ŵ) of a point ŵ from w as the number of discrete
components of ŵ which are different from those of w, namely

d(w, ŵ) =
∣∣∣∣∣

4⋃
i=1

{ŷi : ŷi 
= yi} ∪ {t̂ : t̂ 
= t}
∣∣∣∣∣ .

Then, we define five different discrete neighborhoods obtained by considering
points ŵ ∈ S(w) such that d(w, ŵ) ≤ d̄ , namely

Nd̄ (w) = {ŵ ∈ S(w) : d(w, ŵ) ≤ d̄}
where d̄ = 1, . . . , 5.

As regards the search rules within the discrete neighborhood at Steps 2 and 3.1,
we take into consideration two possibilities:

(i) the points in the discrete neighborhood are considered just as they are generated;
(ii) the points in the discrete neighborhood are ordered with increasing objective

function value and considered following this ordering.

In Tables 5 and 6 we report the results obtained by considering as objective
function the manufacturing cost and, respectively, the rated efficiency, for every
search rule (i), (ii) and every d̄ = 1, 2, . . . , 5.

By comparing the results reported in Tables 5 and 6 with the ones of Tables 3 and
4, respectively, it is possible to draw some considerations about the two approaches
used in the paper, namely the mixed variable method and the continuous strategy.

First of all, as it can be easily seen, the mixed variable approach, independently
from the discrete neighborhood definition (d̄ = i, i = 1, . . . , 5) and from the search
rule adopted ((i) or (ii)), produces solution points which are uniformly better than
the solutions obtained by using the continuous strategy.

Secondly, we note that the best solutions found by algorithm MIVAM for prob-
lems (P̃ l) (l = 1, 2) have an objective function value which is better than the
corresponding best solution of problems (R̃l

h). At first sight this can be a surprising
result especially if we consider that (R̃l

h) is obtained from (P̃ l) by relaxing the



226 G. Liuzzi et al.

Table 5. Results obtained using the mixed variable approach considering the manufacturing cost

d̄ = 1 d̄ = 2 d̄ = 3

initial (i) (ii) (i) (ii) (i) (ii)

t 1 3 5 5 5 5 5
x1 17.5 16 16 16 16 16 16
x2 5.5 6.5 6.5 6.5 6.5 6.5 6.5
x3 17.8 17.352 16.908 16 17.917 18.088 16
x4 4 3.596 4.125 4.549 4.138 3.912 4.485
x5 0.4 0.319 0.307 0.312 0.315 0.306 0.318
x6 0.5682 0.52 0.533 0.661 0.512 0.529 0.661
y1 126.6 126.6 126.6 126.6 126.6 126.6 126.6
y2 160 140 150 140 160 150 140
y3 200 180 180 200 180 180 200
y4 1.5727 1.45 1.55 1.5 1.45 1.5 1.5

cost 174.396 148.267 143.677 143.346 144.854 143.473 143.434

d̄ = 4 d̄ = 5

initial (i) (ii) (i) (ii)

t 1 5 5 5 5
x1 17.5 16 16 16
x2 5.5 6.5 6.5 6.5 6.5
x3 17.8 17.333 17.348 16.93 16.647
x4 4 4.25 4.065 4.266 4.526
x5 0.4 0.31 0.3 0.304 0.315
x6 0.5682 0.641 0.531 0.64 0.633
y1 126.6 126.6 126.6 126.6 126.6
y2 160 140 150 140 140
y3 200 200 180 200 200
y4 1.5727 1.4 1.5 1.4 1.45

cost 174.396 142.987 143.05 142.939 143.582

integrality constraints. Nevertheless, this behavior is comprehensible and is essen-
tially due to the fact that Problem (P̃ l) may have many different local minima. As a
consequence, a monotone continuous local search, like the derivative free one used
in Sect. 3, is more easily attracted toward local minima then algorithm MIVAM
which, on the contrary, has some degree of nonmonotonicity due to the growth
parameter ξ (see Step 3). This parameter gives to the algorithm a broader capacity
of exploring the feasible region thus filtering high local minima and locating better
solutions.

The optimization of the manufacturing cost has given rise to a reduction of the
active material volume (i.e. stack length and stator wire size), with respect to the
initial design, with a “low cost” electric steel type (t = 5). On the contrary, the
efficiency improvement has been reached not only by increasing the volume but
also by choosing a suitable electric steel type (t = 1).
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Table 6. Results obtained using the mixed variable approach considering the rated efficiency

d̄ = 1 d̄ = 2 d̄ = 3

initial (i) (ii) (i) (ii) (i) (ii)

t 1 1 1 1 1 1 1
x1 17.5 16 16 16 16 16 16
x2 5.5 6.5 6.5 6.5 6.5 6.5 6.5
x3 17.8 18.5 18.5 18.5 18.5 18.5 18.5
x4 4 3.723 3.982 3.85 3.705 3.5 3.968
x5 0.4 0.3 0.3 0.3 0.3 0.3 0.3
x6 0.568 0.583 0.582 0.603 0.572 0.545 0.578
y1 126.6 126.6 126.6 126.6 126.6 126.6 126.6
y2 160 160 190 160 180 190 190
y3 200 220 220 220 220 220 220
y4 1.5727 1.75 1.75 1.75 1.75 1.75 1.75

efficiency 88.30% 91.09% 91.29% 91.08% 91.26% 91.33% 91.29%

d̄ = 4 d̄ = 5

initial (i) (ii) (i) (ii)

t 1 1 1 1 1
x1 17.5 16 16 16 16
x2 5.5 6.5 6.5 6.5 6.5
x3 17.8 18.5 18.5 18.5 18.5
x4 4 3.5 3.859 4.084 3.705
x5 0.4 0.3 0.3 0.3 0.3
x6 0.568 0.545 0.567 0.589 0.572
y1 126.6 126.6 126.6 126.6 126.6
y2 160 190 190 190 180
y3 200 220 220 220 220
y4 1.5727 1.75 1.75 1.75 1.75

efficiency 88.30% 91.33% 91.30% 91.23% 91.26%

There is another issue of the mixed variable strategy which deserves some
attention. In fact, in spite of the expectations, it is possible to note that there is no
direct connection between the dimension of the discrete neighborhood (i.e. d̄ = i,
i = 1, . . . , 5) and the objective function value of the corresponding solution. In
particular, the manufacturing cost (rated efficiency) of the solution point does not
decrease (increase) as the discrete neighborhood dimension grows. Moreover, as
concerns the manufacturing cost, we remark that, for search rule (ii), the best
solution is obtained by taking d̄ = 4. As for the efficiency, if we consider search
rule (i), the best solution is obtained when d̄ = 2.

To conclude, the best solution with respect to the manufacturing cost is obtained
by setting d̄ = 5 and search rule (i), while for the rated efficiency the best solution
is obtained by setting d̄ = 3 and search rule (i).
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Finally, it is important to note that all the runs, both for the continuous approach
and for the mixed variable strategy, required a low computational cost in terms of
CPU time which never exceeded a few seconds.

6 Concluding remarks

In this paper the optimal design of induction motors has been considered. In par-
ticular, two different solution strategies have been analyzed and compared. The
obtained results are very interesting and show the fruitfulness of directly taking
into account the presence of both continuous and discrete variables.

It is important to underline that the optimized designs require low additional
tooling costs and this aspect is very important from the manufacturer point of view.
Moreover, the results show the effectiveness of the proposed approach and should
stimulate the designers towards the frequent use of this powerful tool for the design
optimization of electric motors.

However, the theoretical results regarding algorithms MIVAM and DFA re-
ported in [3] and [4] respectively, do not apply in this context. In fact, problems
(P̃ l) and (R̃l

h) for l = 1, 2 and h = 0, 1, . . . , 5 do not satisfy the assumptions
required to prove the convergence of the considered methods in that the objective
functions f̃ (l)(x, y, t) for l = 1, 2 are not continuous on the feasible region. This
problem is due to the nonlinear constraints handling by means of the elimination
technique introduced in Sect. 2. Thus, to overcome this difficulty it would be de-
sirable to define a better strategy to handle the nonlinear constraints. Moreover, the
numerical results point out the presence of many different local minima of prob-
lems (P̃ l) for l = 1, 2 and this would suggest the opportunity of defining a mixed
variable strategy which can take into account the global aspect of the problem.

All the previous issues are subject of continuing research.
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