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Abstract
A trading strategy simply consists in a procedure which defines conditions for buying
or selling a security on a financial market. These decisions rely on the values of some
indicators that, in turn, affect the tuning of the strategy parameters. The choice of
these parameters significantly affects the performance of the trading strategy. In this
work, an optimization procedure is proposed to find the best parameter values of a
chosen trading strategy by using the security price values over a given time period;
these parameter values are then applied to trade on the next incoming security price
sequence. The idea is that the market is sufficiently stable so that a trading strategy
that is optimally tuned in a given period still performs well in the successive period.
The proposed optimization approach tries to determine the parameter values which
maximize the profit in a trading session, therefore the objective function is not defined
in closed form but through a procedure that computes the profit obtained in a sequence
of transactions. For this reason the proposed optimization procedures are based on a
black-box optimization approach. Namely they do not require the assumption that
the objective function is continuously differentiable and do not use any first order
information. Numerical results obtained in a real case seem to be encouraging.
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1 Introduction

Nowadays the Foreign Exchange (Forex) markets produce hundreds of thousands of
transactions every day (with an average turnover totaling 1.9 trillion a day [17]), all
together can be considered the largest financial market.

The main distinguishing feature of a Forex market is its wild dynamics that implies
the use of quite complex trading rules, hard to manage manually. Therefore an algo-
rithmic trading is required.

The aim of this paper is to propose a tool that is able to define the parameter values
of a given Forex trading strategy to obtain the highest profit according to the current
price movements of the market.

The approach is based on the idea that the information extracted from histori-
cal data has a direct influence on the trading rule. The optimized rule is applied
to the price time series immediately following the training period. The rationale
behind this approach is that the market is sufficiently stable so that a trading strat-
egy that is efficiently tuned in a given period still performs well in the incoming next
period.

In the considered optimization approach, the objective function value is the profit
obtained over a fixed time period by the trading strategy. Therefore, there is no analytic
expression of the objective function but it is only possible to obtain its values by repro-
ducing the trading actions obtained by the particular strategy over a known sequence
of security prices. The optimization variables are the trading strategy parameters that
can be either continuous or discrete.

In this paper a new local optimization method suitable to tackle both the black-box
nature of the problem and the mixed-integer one is first proposed.

Then two global optimization algorithms, which have better properties to approxi-
mate global solutions instead of local ones, are described. These two algorithms derive
by combining two suitable multistart strategies (one probabilistic and one determin-
istic) with the previous local procedure.

All the described algorithms are tested on a real case. The obtained results seems
to indicate that the proposed approach of finding the trading strategy parameters by
an optimization approach and exploting the market stability in the near future can
be promising. This early result should be completed with an extended backtesting
procedure on a larger dataset to avoid data snooping.

We remark that the aim of the work is to point out that an optimization approach can
play a positive role in the algorithmic trading field by improving the performances of
any strategy. Therefore, the study was neither intended to propose a particular trading
strategy which is the most profitable, nor to define the best optimization procedure for
parameters tuning. All of these points can be developed in further studies.

In Sect. 2 we present a literature review. In Sect. 3 we introduce the problem and
in Sect. 4 we illustrate some possible approaches for the solution of the optimization
problem. Finally in Sect. 5 numerical results are presented and discussed.
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2 Literature review

The classical signal models generally fail in describing the underlying nonlinear data
structure [7,30]; on the other hand machine learning and data mining techniques have
proven to be suitable for the prediction of market movements, mainly relying on the
structural ability of Artificial Neural Networks (ANNs) and Support Vector Machines
(SVM) to capture significant information patterns in data. A complete survey on the
use of ANN for stock market predictions is given in [8] and the same authors in
[9] highlight the superiority of ANN methodology versus the standard time series
forecasting. The superiority of soft computing compared to statistical analysis is also
addressed in [2]. Furthermore, in [28], it is proved that ANN produce better prediction
accuracy than non-linear regression and classification tree models.

Fuzzy neural networks (FNN) approaches have been proposed in [18],while support
vector regression methods (SVR) are found in [25] and [31].

In these papers and in the similar relevant literature, the learning techniques are
mostly used in order to integrate the decision making process but they do not directly
affect the structure of its strategy. A different and parallel approach is proposed in
literature to improve the efficiency of the trading by influencing more directly the
strategy and/or its structure by using learning or optimization techniques (see for
example [24]).

In this paper we follow the idea proposed in this last line of research. Namely our
aim is to propose a new methodology to improve the efficiency of a trading strategy
by exploiting the information contained in a past trading period in order to get “good”
values of its parameters. This approach must not be seen as an alternative to the
previous ones proposed in literature but rather as a further tool that can be combined
with others to provide efficient strategies to traders.

The tuning of the parameters of the trading strategy is carried out by tackling an
optimization problem showing the following difficult features: no first order informa-
tion can be used (black-box problem); nonsignificant local minima can exist (global
optimization problem); some variables are continuous and some variables are integer
(mixed integer problem).
In literature, optimization problems showing one or more of the previous features
have been tackled by using various methodological approaches. Some examples can
be found in: [1,4,12] (local derivative-freemethods); [14,19,26] (global derivative-free
methods); [5,20,23,27] (mixed integer derivative-free methods).

For a more extensive review we refer to the references reported in the previous
papers and to the recent survey [16].

Finally we recall [6] and [3] where, for the first time, a derivative-free approach
was used for the tuning of the parameters of an algorithm.

3 A trading strategy and the optimization problem

In this Section a particular trading strategy is chosen and an optimization approach
for computing its parameter values is proposed.
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The considered trading procedure is composed of basic rules to show that even for
a prototypical strategy, the achievable profits can be significantly improved provided
that its parameter are selected by an optimal policy.

3.1 A basic trading strategy

In trading, any tradable asset of every kind is called security. The security price is
characterized by resuming its behavior over adjacent time intervals called timeBars
{ti }. The closing price Cl(i), i.e. the last value within the i-th timeBar, is the value
used for trading. A trader starts a transaction by opening a position; the position
is long/short if he buys/sells a security. Consequently, the transaction is completed
when the trader sells/buys back the security, therefore closing the position. Whatever
the position, the profit he realizes is given by the difference between the selling and
the buying prices. A trading strategy is strictly characterized by the opening and the
closing criteria. In the selected strategy, the conditions for opening a position are
defined by considering the momentum factor (MF). At timeBar ti , MF is defined as
follows:

MF(i) = Cl(i) − Cl(i − �), i > �,

where � is a positive integer parameter that defines a suitable time delay. By using
the MF the following opening conditions can be obtained:

Opening Conditions

If Cl(i) > Cl(i − �L ) + min{MF(i − 1), MF(i − 2)} then
Open a Long Position

If Cl(i) < Cl(i − �S) + max{MF(i − 1), MF(i − 2)} then
Open a Short Position

i > 2 + max{�L ,�S}

The closing conditions are defined in terms of the Target and the Stop price levels.
These two levels must be fixed whenever a position is opened:

– theTarget price levelmust ensure a satisfiable profit, if themarketmoves according
to the trend expectation;

– the Stop price level must ensure an acceptable loss, if the market moves against
the trend expectation.

Stop and Target price levels are defined both for long and short positions. The
simplest way to define Stop and Target is as follows
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Set Stop and Target values

If a Long Position is opened at time ti then
StopL = (1 − qL ) × Cl(i)
TargetL = (1 + pL ) × Cl(i)

If a Short Position is opened at time ti then
StopS = (1 + qS) × Cl(i)
TargetS = (1 − pS) × Cl(i)

where 0 < pL , pS, qL , qS < 1 are suitable positive constant parameters. As a matter
of fact, the Stop and Target values can be updated by a simple “trend-following”
rule to ensure a better profit.

Set Stop and Target values trend following updates

If a Long Position is opened at time ti then
StopL (i + 1) = StopL (i) + �StopL
T argetL (i + 1) = TargetL (i) + �TargetL

If a Short Position is opened at time ti then
StopS(i + 1) = StopS(i) − �StopS
T argetS(i + 1) = TargetS(i) − �TargetS

In the previous sketch �{·} are further four parameters to be determined. Then the
described strategy depends on the values of the following ten variables where eight
can assume continuous values and the remaining two can assume discrete values:

xc = [pL , qL , pS, qS, �StopL , �TargetL , �StopS , �TargetS ] ∈ R
8, (1)

xd = [�L , �S] ∈ Z
2, (2)

x = [xc, xd ] ∈ R
8 × Z

2.

The profits {�(i, x)} over a trading period of N timeBars is computed as follows.
If at time ti no opening condition is satisfied, then �(i, x) = 0; if a long position is
opened then�(i, x) = −Cl(i), if a short position is opened then�(i, x) = Cl(i). If a
position is opened, at any successice time ti+k the current price Cl(i + k) is compared
to the Stop and Target thresholds. On a long position: if StopL(i + k) < Cl(i + k) <

TargetL(i + k) then �(i + k, x) = 0, otherwise �(i + k, x) = Cl(i + k). On a
short position: if TargetS(i + k) < Cl(i + k) < StopS(i + k) then �(i + k, x) = 0,
otherwise �(i + k, x) = −Cl(i + k). At the end of the trading period the total profit
is given by

�(x) =
N∑

i=1

�(i, x).
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3.2 Suitable sliding time windows

An efficient procedure can be designed by dividing the trading period into adjacent
shorter time intervals. The price time series of a subinterval is used as training data
to evaluate the parameter values of the trading strategy that guarantee the best profit
over the considered subinterval; these values are used in a trading session during the
subsequent interval. Hence, a training period is followed by a trading period that will
become a training period in the next iteration.

This strategy strongly relies on the implicit assumption that the market shows a
sort of resistance to change over short periods of time, so that the optimal parameter
values of the training period remain good enough for the subsequent trading period.
This assumption can be related to the predictability of economic and financial market
time series, this feature can be measured by estimating the Hurst Exponent (H ) from
data (see [22]). On the batch of data used for training, this analysis showed that the
market resistance hypothesis could be reasonably adopted within a time horizon of 90
min.

3.3 The optimization problem

The rationale behind the proposed approach consists in determining the optimal param-
eter values of a trading strategy over a training period and in using these values in the
subsequent trading period.

According to the Hurst Exponent analysis, training/trading periods of 90 min and
timeBars of 1 min, {ti }, i = 1, . . . , 90 are considered.

If a set of price values Cl(i), i = 1, . . . , 90 is given then the parameter values that
increase the final profit as much as possible can be obtained by solving the following
maximization problem:

max
x∈R8×Z2

90∑

i=1

�(i, x) = �(x)

s.t. l ≤ x ≤ u, (3)

where l and u are the lower and upper bounds for the variables.
In the numerical experience of Sect. 5 we use the following vectors

l = [2, 0, 0, 0, 2, 0, 1, 1, 1, 1]T u = [30, 1, 1, 1, 30, 1, 10, 10, 10, 10]T

The values of the lower bounds li , i = 1, . . . , 10 were chosen so as to avoid that
either the objective function is not defined or the indicators used in the strategy lose
their meaning. Instead, the values of the upper bounds ui , i = 1, . . . , 10 were derived
by applying the procedure developed in [10]. This procedure finds reasonable values
for the upper bounds by exploiting the information contained on a set of data. In
particular in [10] it was used a set of data that preceded the one used in this work.
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4 Optimization algorithms

The optimization problem described in the previous sections can be easily formalized
as the following general bound constrained mixed variable problem:

min f (x)
x ∈ F,

(4)

where

F :=
{
l ≤ x ≤ u : xi ∈ R, i ∈ Ic = {1, . . . , r}, xi ∈ Z, i ∈ Id = {r + 1, . . . , n}

}
.

In the following we denote by xc ∈ R
r the subvector of x with components xi ,

i ∈ Ic, by xd ∈ Z
n−r the subvector of x with components xi , i ∈ Id , by [x]F the

projection of the point x overF and byD = {x ∈ R
n : l ≤ x ≤ u} the box constraints

of Problem (4).
In this section we try to define some optimization algorithms able to tackle the

Problem (4) in a sufficiently efficient way. As said before, the aim is to understand if
an optimization approach can be an interesting tool for the tuning of the parameters of
a trading strategy. In particular, we try to combine some approaches proposed in the
literature that seem to be promising and efficient to deal with the particular features
of Problem (4).

In the class of algorithms using only values of the objective function we consider
the ones which exploit derivative-free linesearch techniques. Our choice derives from
the fact that they usually showed efficient numerical behaviours both on test problems
and on difficult real world problems. The approach described in [20] for solvingmixed
bound constrained problems is initially considered.Howevermethods proposed in [20]
can not efficiently deal with the previous Forex trading strategy optimization problem
for these reasons:

(i) the theoretical convergence properties of suchmethods rely on the assumption that
the objective function is continuously differentiable;

(ii) under the previous smoothness assumption they are guaranteed to converge to
points that satisfy only necessary optimality conditions.

In the following, drawback (i) is overcome by defining a new derivative-free local
algorithm for Problem (4) whose global convergence properties towards points that
satisfy necessary optimality conditions can be stated under a weaker assumption than
the continuous differentiability of the objective function.

As regards drawback (ii), two algorithms are defined by using the new proposed
local algorithm within two multistart strategies, one probabilistic and one determinis-
tic. In theory, these algorithms have a better capability to find a global minimum. In
practice, they should guarantee that an “efficient good solution” can be found.

In the next two subsections the new local algorithm is first studied, then the two
multistart global optimization algorithms are described.
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4.1 Local optimization algorithm

This sub-section describes a new derivative-free method for box constrained opti-
mization problems where the objective function can be non smooth and some of the
variables are continuous and others are discrete. This algorithm derives by combining
the approaches proposed in [20] and [12].

The convergence properties of the new algorithm can be stated by using the fol-
lowing assumption.

Assumption 1 The objective function f : R
n → R is Lipschitz continuous with

respect to the continuous variables xi , i ∈ Ic.

First of all we recall that every local/global minimum point of (4) is a stationary
point according to the following definition.

Definition 1 A point x∗ ∈ F is a stationary point of Problem (4) if it satisfies

f ◦(x∗; d) ≥ 0, for all d ∈ Dc(x
∗) (5)

f (x∗) ≤ f (x) for all x ∈ Nd(x
∗) ∩ F , (6)

where

f ◦(x; d) = lim sup
y → x, y ∈ F
t ↓ 0, y + td ∈ F

f (y + td) − f (y)

t
, (7)

Dc(x) = { d ∈ R
n : di ≥ 0 if i ∈ Ic and xi = li ,

di ≤ 0 if i ∈ Ic and xi = ui ,

di ∈ R if i ∈ Ic and li < xi < ui ,

di = 0 if i ∈ Id },
Nd(x) = {

x̄ ∈ R
n : x̄c = xc, ‖xd − x̄d‖2 = 1

}
.

For every x ∈ F , we note that f ◦(x; d) is the Clarke-Jahn generalized directional
derivative of function f along d (see [13]), Dc(x) is the set of feasible directions
with respect the continuous variables,Nd(x) is a neighbourhood of x with respect the
discrete variables.

The new algorithm (called LDF) takes into account the mixed integer nature of
Problem (4) by performing two different sampling techniques, one for investigating
the behavior of the objective function with respect the continuous variables and the
other one for the behavior with respect the discrete variables.

The Projected Continuous Search updates the continuous variables by performing
a derivative-free linesearches along appropriate search directions.

The sequence of the search directions must be able to approximate eventually any
direction. This requirement is formalized in the following the definition.
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Definition 2 Let K be an infinite subset of indices. The subsequence of normalized
directions {sk}K , with sk ∈ R

r , is said to be dense in the unit sphere if for any s ∈ R
r ,

such that ‖s‖ = 1, and for any ε > 0 there exists an index k ∈ K such that ‖sk−s‖ ≤ ε.

Algorithm PCS - Projected Continuous Search (y, α̃, d;α, d+)

Data. γ > 0.

Step 0. Set α = α̃.

Step 1. If f ([y + αd]F ) ≤ f (y) − γα2 then set d+ = d and go to Step 4.

Step 2. If f ([y − αd]F ) ≤ f (y) − γα2 then set d+ = −d and go to Step 4.

Step 3. Set α = 0, return α and d+ = d.

Step 4. Let β = 2α.

Step 5. If f ([y + βd+]F ) > f (y) − γβ2 return α and d+.

Step 6. Set α = β and go to Step 4.

As regards the discrete variables, the Discrete Search updates these variables by
performing a suitable local search along the coordinate directions, er+1 . . . en (Discrete
Search).

Algorithm DS - Discrete Search (y, δ̃, p; δ, p+)
Step 1. Compute the largest δ̄ such that y + δ̄ p ∈ F . Set δ = min{δ̄, δ̃}.
Step 2. If δ > 0 and f (y + δ p) ≤ f (y) then set p+ = p and go to Step 6.

Step 3. Compute the largest δ̄ such that y − δ̄ p ∈ F . Set δ = min{δ̄, δ̃}.
Step 4. If δ > 0 and f (y − δ p) ≤ f (y) then set p+ = p and go to Step 6.

Step 5. Set δ = 0 and return δ and p+ = p.

Step 6. Let β = min{δ̄, 2δ}
Step 7. If δ = δ̄ or f (y + 2β p+) > f (y) return δ and p+.

Step 8. Set δ = β and go to Step 6.

The convergence properties of Algorithm LDF are described by the following
proposition.

Proposition 1 Let {xk} be the sequence produced by Algorithm LDF, let x̄ be an accu-
mulation point of {xk} and let {xk}K be the subsequence such that

lim
k→∞,k∈K xk = x̄ .

If the subsequence {sk}K of the search directions used by the algorithm is dense in
the unit sphere (according the Definition 2), then the point x̄ is a stationary point of
Problem (4) (see Definition 1).

Proof The steps of Algorithm LDF imply that, for all k

f (xk+1) ≤ f (x̃k) ≤ f (xk).
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Algorithm LDF - Local Derivative Free Algorithm

Data.A point x0 ∈ F , scalars α̃0 > 0, δ̃i0 = 1, i ∈ Id , sequences {sk } and {dk } such that sk ∈ R
r , ‖sk‖ = 1

and dk ∈ R
n , (dk )i = (sk )i , i ∈ Ic , (dk )i = 0, i ∈ Id , for all k.

For k = 0, 1, . . .

compute α by the Projected Continuous Search (xk , α̃k , dk ; αk , d̃k ).

If (α = 0) then α̃k+1 = α̃k/2 and x̃k = xk

else α̃k+1 = α and x̃k = [xk + αd̃k ]F .

For i = 1, . . . , n − r

compute δ by the Discrete Search (x̃k , δ̃
i
k , e

r+i ; δ, pk )

If (δ = 0) then set δ̃ik+1 = max{1, �δ̃ik/2} and yi = x̃k .

else set δ̃ik+1 = δ. and yi = x̃k + δ pk .

End For

Set xk+1 ∈ argmin{ f (y1), . . . , f (yn−r )} and k = k + 1

End For

The previous inequalities and the compactness of the feasible set guarantee the exis-
tence of limit f̄ such that

lim
k→∞ f (xk) = f̄ , lim

k→∞ f (x̃k) = f̄ .

These limits allow us to repeat, byminormodifications, the theoretical analyses per-
formed in [20] and [12] to prove the convergence of AlgorithmDFLord and Algorithm
DFNsimple respectively. In particular, by adapting the reasoning behind the proof of
Proposition 2.7 of [12], we can conclude that the point x̄ satisfies condition (5). Then,
the same arguments of the proof of Proposition 12 of [20] guarantee that x̄ satisfies
also property (6). �

4.2 Global optimization algorithms

Proposition 1 shows that Algorithm LDF is able to produce sequences of points which
converge towards stationary points, namely points that satisfy only the necessary con-
ditions to be a global minimum of Problem (4). In order to better understand the real
potential of the optimization approach in the considered Forex problem, we use also
optimization algorithms that try to determine the global minimum points of the Forex
problem.

By adapting the proof of Theorem4.1 of [11] and by requiring suitable assumptions,
it is possible to ensure the existence of a neighborhood of a global minimum where
AlgorithmLDF is “attracted”. Namely, if AlgorithmLDF starts from a point belonging
to the previous neighborhood, it produces a sequence of points which remains in this
neighborhood and converges to the global minimum point.

We exploit this property to define two suitable multistart techniques for Algorithm
LDF. In particular, we generate the starting points by performing some iterations of two
global optimization techniques which generate sets of points (either in a probabilistic
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or deterministic setting) which tend to be dense in the feasible region as the number of
iterations increases. Hence, they are able to produce a point belonging to the “attraction
set” of a global minimum point after a finite number of steps if such a set exists,
otherwise they are able to find better and better approximations of the global minimum
as the number of iterations increases.

4.2.1 Simulated annealing multistart algorithm

The proposed probabilistic multistart algorithm is based on the Simulated Annealing
approach (see [15]). In particular, a starting point for Algorithm LDF is chosen at
random according to a probability density function proportional to

e−max[0, f (x)− f (xmin)]/T

where xmin is an approximation of the global minimum point and T is a parameter
called “annealing temperature” which is progressively decreased during the mini-
mization process. The more the temperature decreases, the larger is the probability
of accepting points satisfying f (x) ≤ fmin + ε and, hence, also points belonging
to a neighborhood of a global solution. This strategy is exploited in the following
Algorithm SA.

Algorithm SA - Simulated Annealing Multistart Algorithm
Data. A point x0 ∈ F , a temperature T0
Set x∗

0 = x0 and k = 1
For k = 0, 1, . . .

generate randomly a point x̃k ∈ D and a scalar αk ∈ [0, 1].
If αk ≤ e−max[0,( f (x̃k )− f (x∗

k−1))/Tk−1]

use xk = [x̃k ]F as starting point for Algorithm LDF obtaining the point yk
If f (yk ) ≤ f (x∗

k−1) then set x∗
k = yk

else set x∗
k = x∗

k−1
compute Tk ∈ (0, Tk−1] according to a suitable Updating rule

else set x∗
k = x∗

k−1
set k = k + 1

End For

Concerning the updating rule of the temperature Tk , we refer to the updating rule
reported in [21]. By using the analysis carried out in [29] and [21] it is possible to
prove the following result.

Proposition 2 For every global minimum point x∗ of Problem (4) and for every ε > 0,
with probability one Algorithm SA produces in a finite number of iterations a point
xk ∈ F such that

‖(xk)c − x∗
c ‖ ≤ ε, (xk)d = x∗

d .
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4.2.2 DIRECT multistart algorithm

The proposed deterministic multistart strategy is based on the DIRECT algorithm
proposed in [14]. The approach of the DIRECT algorithm consists in producing a
sequence of partitions {Hk} of the initial set D. More in particular, at iteration k, the
partition of the set D is given by

Hk = {Di , i ∈ Ik}

where Di = {x ∈ R
n : li ≤ x ≤ ui }, li , ui ∈ [l, u], x̃ ik = (li + ui )/2.

Then the next partitionHk+1 is obtained by selecting and by further partitioning the
most “promising” hyperrectanglesPk ⊆ Hk . An hyperrectangleDh can be considered
“promising” in containing a global minimum point if f (x̃ hk ) is small or if ‖uh − lh‖
is large. In particular, given a θ ∈ (0, 1), the set Pk consists of potentially optimal
hyperrectangles, namely

Pk =
{
Dh, h ∈ Ik : a scalarLh > 0 exists such that (8)

f (x̃ hk ) − Lh‖lh − uh‖ ≤ min

[
θ min

i∈Ik
f (x̃ ik) , min

i∈Ik
[
f (x̃ ik) − Lh‖li − ui‖ ] ] }

.

From the theoretical point of view, the DIRECT algorithm has the important prop-
erty that, as the iterations increase, the centroids of the hyperintervals tend to produce
a set dense on D.

In the following Algorithm DA we introduce Algorithm LDF in the DIRECT type
framework presented in [19]. As concerns the partition technique, we refer to [14] for
a complete description. Then the analysis carried out in [14] can be adapted to prove
the following result.

Algorithm DA - DIRECT Multistart Algorithm
Data. a set D
Set D0 = D, H0 = {D0}, x∗

0 = [x̃00 ]F and k = 0
For k = 0, 1, . . .

compute the potentially optimal hyperrectangles Pk inHk

for all Dh ∈ Pk , use x
h
k = [x̃hk ]F as starting points for Algorithm LDF

denote with yk the best point obtained by the local optimizations

If f (yk ) ≤ f (x∗
k ) then set x∗

k+1 = yk

else set x∗
k+1 = x∗

k

partition all the potentially optimal hyperrectangles Pk

build the new partition Hk+1

set k = k + 1
End For
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Proposition 3 For every global minimum point x∗ of Problem (4) and for every ε > 0,
Algorithm DA produces in a finite number of iterations a point x h̃k ∈ F such that

‖(xh̃k )c − x∗
c ‖ ≤ ε, (xh̃k )d = x∗

d .

5 Numerical experiments

The considered simple trading strategy has been applied within the Forex market for
the currency pair euro and U.S. dollar (EUR/USD). All the experiments have been
performed by using a set of the free data from Dukascopy.com of EUR/USD pair
from January 2014 to February 2014, data are aggregated in timeBars of 1 min. A first
batch of data was exploited to find the values of the environmental variables (the Hurst
exponent from Sect. 3.2 and the lower and upper bounds on x); the remaining batch
of data was split into a series of adjacent time windows of 90-min, as suggested by the
Hurst analysis. Since the set of data covers a relative wide horizon, the results obtained
are less affected by the particular time period considered. Then the three procedures
LDF, SA and DA have been applied to optimize the basic procedure parameters on a
trainingwindow, and then the optimized trading procedure was applied on the adjacent
trading window, and finally the profits obtained were recorded. As a matter of fact one
run of Algorithm LDF, choosing as starting point the middle points of the feasible
region x0i = (ui − li )/2 for i = 1, . . . , 10, was executed just to show that even a local
algorithm can generate positive profits. Then the two global algorithms SA and DA
have been applied for a suitable number of local minimizations. Since the dynamics
of the EUR/USD pair is quite quick, the number of local minimizations had to satify a
trade-off between the computation time and the obtaining of a good approximation of
the global minimum. After a rough tuning, we have chosen to stop Algorithm SA after
15 local minimizations and Algorithm DA after 10 local minimizations. The results
reported on Table 1, which describe the profits achieved in the training phase at the
end of each month by using the trading parameters given by the three algorithms show
that, in the training phase, Algorithm SA and Algorithm DA allow to obtain profits
which are significantly better than the ones obtained by the Algorithm LDF alone.

Finally, let us check the analysis of the profits achieved on the trading periods by
the strategies with the parameters identified by the different optimization procedures.
In Fig. 1 the cumulative profit achieved in the 2-months trading period is reported. The
curves show that the DIRECT method performed the best, for the considered set of
data: in summary, the parameters obtained by the Algorithm LDF yield a cumulative
profit of 0.0247, those obtained by the Algorithm SA yield a cumulative profit of
0.0307 and parameters obtained by the Algorithm DA yield a cumulative profit of
0.0648. In other words, it is possible to gain the 2.47% of the invested capital after 2
months of trading by using Algorithm LDF, the 3.07% by using Algorithm SA and
the 6.48% by using Algorithm DA.

These preliminary results indicate that: (i) the local minimization approach by
Algorithm LDF is able to find parameters value in the training phase, which yield
a positive profit in the successive trading time window; (ii) the global optimization
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Table 1 The cumulated profit
achieved by the different
procedures over the training
periods

Period LDF SA DA

January 0.0317 0.08104 0.09799

February 0.02267 0.06805 0.07256

Total 0.05437 0.14909 0.17055

Fig. 1 The Cumulative Profits achieved applying the different Optimization Algorithms and the single
Local Optimization procedure over the whole trading period

approach by Algorithm SA determines the parameters value that yield higher prof-
its than Algorithm LDF, by performing 15 local minimizations, the differences are
significative in the training phase, much less in the trading phase; (iii) the global pro-
cedure of Algorithm DA produces parameter values that outperform in terms of profit
the ones obtained by both LDF and SA. The differences are significative both in the
training phase and in the trading phase. On the other hand Algorithm DA uses 10 local
minimizations that, in any case, are less than those used by Algorithm SA.

These results are anyway just indicative, in the effort to support the use of proper
optimization procedures in algorithmic trading. To avoid data snooping, a more exten-
sive benchmarking procedure on a larger dataset should be performed. This, along
with other issues, is object of a further study.

6 Conclusions

The aim of the paper is to show that the use of optimization techniques can provide
useful tools to final traders. The proposed contribution is to describe an optimiza-
tion procedure for finding efficient values of the parameters of a trading strategy for
the Forex market. The idea is to adopt a sliding time windows scheme for a price
time series, to dynamically apply a specific optimization procedure to obtain the best
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parameters of every timewindow and, then, to use the optimized trading strategy in the
next period. In particular a relatively simple trading strategy is considered and three
different minimization algorithms are proposed. The first one, Algorithm LDF, is a
local minimization method which tries to take into account the particular structure of
the considered optimization problem. The other two are global optimization methods,
Algorithm SA and Algorithm DA, and are based on multistart strategies which use
LDF Algorithm as local strategy. The numerical experience performed on real data
deriving from the trading of the EUR/USD currency pair are promising. All three
algorithms are able to obtain values of the trading parameters that guarantee positive
global profits on the trading periods. Even the trading parameters given by the local
strategy, AlgorithmLDF, produce significant profits. Between the two global methods,
Algorithm DA produces better profits using less local searches.

The reported results encourage to perform further research on the following topics:

– to apply a similar optimization approach to different (possibly better) trading strate-
gies;

– to define new (possibly more efficient) optimization algorithms;
– to improve (possibly to speed up) the approach by combining it with data mining
techniques.

Of course, any improvement deriving from the study of the previous points and a
thorough benchmarking, would strengthen further the thesis of this paper.
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